Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_0920 exbB

Biopolymer transport protein, ExbB (NCBI)

CircVis
Functional Annotations (5)
Function System
Biopolymer transport proteins cog/ cog
transport go/ biological_process
protein transporter activity go/ molecular_function
membrane go/ cellular_component
exbB tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_0920
(Mouseover regulator name to see its description)

RSP_0920 is regulated by 20 influences and regulates 0 modules.
Regulators for RSP_0920 exbB (20)
Regulator Module Operator
RSP_0443 232 tf
RSP_0601 232 tf
RSP_1092 232 tf
RSP_1790 232 tf
RSP_1866 232 tf
RSP_2572 232 tf
RSP_2939 232 tf
RSP_0087 24 tf
RSP_0443 24 tf
RSP_0489 24 tf
RSP_0601 24 tf
RSP_0927 24 tf
RSP_2200 24 tf
RSP_2324 24 tf
RSP_2572 24 tf
RSP_2606 24 tf
RSP_2780 24 tf
RSP_2800 24 tf
RSP_3238 24 tf
RSP_3418 24 tf

Warning: RSP_0920 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7768 4.50e+03 AaaCtggc.t..Ttgcacatt.gc
Loader icon
7769 9.60e+03 CGGGaGAc
Loader icon
8182 8.30e-09 tt.c.GAt.GAaa.actCagggat
Loader icon
8183 8.30e-01 cgGgCaGtCgaGAtcaggCgg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_0920

RSP_0920 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
Biopolymer transport proteins cog/ cog
transport go/ biological_process
protein transporter activity go/ molecular_function
membrane go/ cellular_component
exbB tigr/ tigrfam
Module neighborhood information for RSP_0920

RSP_0920 has total of 36 gene neighbors in modules 24, 232
Gene neighbors (36)
Gene Common Name Description Module membership
RSP_0482 kduI 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase (NCBI) 24, 301
RSP_0525 RSP_0525 hypothetical protein (NCBI) 24, 161
RSP_0773 RSP_0773 mannonate dehydratase (NCBI) 24, 301
RSP_0920 exbB Biopolymer transport protein, ExbB (NCBI) 24, 232
RSP_0921 exbD biopolymer transport protein, ExbD (NCBI) 24, 232
RSP_0922 RSP_0922 Putative TonB protein (NCBI) 24, 232
RSP_1088 RSP_1088 hypothetical protein (NCBI) 232, 295
RSP_1089 RSP_1089 sugar/cation symporter, GPH family (NCBI) 232, 295
RSP_1090 RSP_1090 Putative cyclopropane/cyclopropene fatty acid synthesis protein (NCBI) 232, 295
RSP_1091 RSP_1091 Putative cyclopropane/cyclopropene fatty acid synthesis protein, flavin amine oxidase (NCBI) 232, 295
RSP_1092 rpoE sigma24, RpoE (NCBI) 232, 295
RSP_1093 chrR Anti-sigma factor ChrR (NCBI) 232, 295
RSP_1437 RSP_1437 ABC Fe+3 hydroxamate (ferrichrome) transporter, ATPase subunit (NCBI) 24, 55
RSP_1438 RSP_1438 ABC Fe+3 hydroxamate (ferrichrome) transporter, fused inner membrane subunits (NCBI) 24, 55
RSP_1439 RSP_1439 ABC Fe+3 hydroxamate (ferrichrome) transporter, periplasmic siderophore binding protein (NCBI) 24, 55
RSP_1440 RSP_1440 TonB dependent, hydroxamate-type ferrisiderophore, outer membrane receptor (NCBI) 24, 55
RSP_1543 RSP_1543 hypothetical protein (NCBI) 232, 289
RSP_1544 RSP_1544 hypothetical signal peptide protein (NCBI) 232, 289
RSP_1546 bfr Bacterioferritin (NCBI) 161, 232
RSP_1547 RSP_1547 probable bacterioferritin-associated ferredoxin (NCBI) 161, 232
RSP_1548 RSP_1548 putative iron-regulated protein (NCBI) 24, 232
RSP_2734 zwf Glucose-6-phosphate dehydrogenase (NCBI) 24, 301
RSP_2735 pgl 6-phosphogluconolactonase (NCBI) 24, 301
RSP_2736 pgi Phosphoglucose isomerase (PGI) glucose-6-phosphate isomerase (NCBI) 24, 301
RSP_2913 RSP_2913 ABC Fe+3 siderophore transporter, periplasmic substrate-binding protein (NCBI) 55, 232
RSP_3056 RSP_3056 TonB dependent-iron siderophore receptor (NCBI) 24, 55
RSP_3078 RSP_3078 hypothetical protein (NCBI) 161, 232
RSP_3079 RSP_3079 ABC Fe+3 siderophore transporter, periplasmic substrate-binding protein (NCBI) 55, 232
RSP_3081 RSP_3081 ABC multidrug efflux transporter, fused ATPase and inner membrane subunits (NCBI) 24, 55
RSP_3220 RSP_3220 ABC ferric siderophore transporter, inner membrane subunit (NCBI) 24, 55
RSP_3221 RSP_3221 ABC ferric siderophore transporter, inner membrane subunit (NCBI) 24, 55
RSP_3222 RSP_3222 ABC ferric siderophore transporter, ATPase subunit (NCBI) 24, 55
RSP_3223 RSP_3223 None 24, 337
RSP_3678 RSP_3678 Siderophore-interacting protein (NCBI) 24, 239
RSP_4355 RSP_4355 hypothetical protein (NCBI) 24, 173
RSP_6176 RSP_6176 putative tail fiber assembly protein (NCBI) 24, 80
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_0920
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend