Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_1499

Probable gamma-glutamyltranspeptidase (NCBI)

CircVis
Functional Annotations (8)
Function System
Gamma-glutamyltransferase cog/ cog
gamma-glutamyltransferase activity go/ molecular_function
Taurine and hypotaurine metabolism kegg/ kegg pathway
Selenocompound metabolism kegg/ kegg pathway
Cyanoamino acid metabolism kegg/ kegg pathway
Glutathione metabolism kegg/ kegg pathway
Arachidonic acid metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_1499
(Mouseover regulator name to see its description)

RSP_1499 is regulated by 36 influences and regulates 0 modules.
Regulators for RSP_1499 (36)
Regulator Module Operator
RSP_0316 174 tf
RSP_0402 174 tf
RSP_0623 174 tf
RSP_1243 174 tf
RSP_1550 174 tf
RSP_1669 174 tf
RSP_1892 174 tf
RSP_1922 174 tf
RSP_2171 174 tf
RSP_2591 174 tf
RSP_2610 174 tf
RSP_2681 174 tf
RSP_2867 174 tf
RSP_2939 174 tf
RSP_3464 174 tf
RSP_0032 278 tf
RSP_0087 278 tf
RSP_0327 278 tf
RSP_0394 278 tf
RSP_0698 278 tf
RSP_0755 278 tf
RSP_0774 278 tf
RSP_0927 278 tf
RSP_1032 278 tf
RSP_1034 278 tf
RSP_1139 278 tf
RSP_1243 278 tf
RSP_1272 278 tf
RSP_1890 278 tf
RSP_2591 278 tf
RSP_2840 278 tf
RSP_3029 278 tf
RSP_3165 278 tf
RSP_3202 278 tf
RSP_3317 278 tf
RSP_3731 278 tf

Warning: RSP_1499 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
8068 7.00e+01 aAaGaAa.gccTGctac.aCATct
Loader icon
8069 2.90e+03 TTGACa
Loader icon
8270 5.40e-11 aAccGcggaAcacGttTgtCaa
Loader icon
8271 6.00e-04 tc.agacTcTcCatccaaTt.ca
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_1499

RSP_1499 is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
Gamma-glutamyltransferase cog/ cog
gamma-glutamyltransferase activity go/ molecular_function
Taurine and hypotaurine metabolism kegg/ kegg pathway
Selenocompound metabolism kegg/ kegg pathway
Cyanoamino acid metabolism kegg/ kegg pathway
Glutathione metabolism kegg/ kegg pathway
Arachidonic acid metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Module neighborhood information for RSP_1499

RSP_1499 has total of 58 gene neighbors in modules 174, 278
Gene neighbors (58)
Gene Common Name Description Module membership
RSP_0153 RSP_0153 hypothetical protein (NCBI) 107, 278
RSP_0170 RSP_0170 hypothetical protein (NCBI) 174, 291
RSP_0250 RSP_0250 hypothetical protein (NCBI) 25, 278
RSP_0251 RSP_0251 Outer membrane efflux protein (NCBI) 223, 278
RSP_0252 RSP_0252 Protein-L-isoaspartatecarboxylmethyltransferase (NCBI) 262, 278
RSP_0253 RSP_0253 Glycine/D-amino acid oxidase (deaminating) (NCBI) 136, 278
RSP_0329 RSP_0329 GAF sensor diguanylate cyclase (GGDEF) (NCBI) 174, 175
RSP_0398 RSP_0398 dehydrogenase (NCBI) 239, 278
RSP_0423 RSP_0423 Aldo/keto reductase (NCBI) 121, 278
RSP_0803 DppF ABC dipeptide transporter, ATPase subunit DppF (NCBI) 174, 175
RSP_0913 crt Enoyl-CoA hydratase/isomerase (NCBI) 82, 278
RSP_0914 RSP_0914 Short-chain dehydrogenase/reductase SDR (NCBI) 82, 278
RSP_0915 RSP_0915 hypothetical protein (NCBI) 25, 278
RSP_0959 RSP_0959 ATPase (NCBI) 174, 200
RSP_1242 RSP_1242 hypothetical protein (NCBI) 76, 278
RSP_1243 RSP_1243 transcriptional regulator, LacI family (NCBI) 76, 278
RSP_1244 RSP_1244 putative IolE, Sugar phosphate isomerases/epimerases (NCBI) 76, 278
RSP_1245 RSP_1245 predicted oxidoreductase, Gfo/Idh/MocA family (NCBI) 76, 278
RSP_1247 RSP_1247 ABC sugar transporter, ATPase subunit (NCBI) 76, 278
RSP_1249 RSP_1249 ABC ribose transporter, periplasmic solute-binding protein (NCBI) 76, 278
RSP_1361 RSP_1361 hypothetical protein (NCBI) 126, 174
RSP_1374 lpsB putative lipopolysaccharide core biosynthesis mannosyltransferase protein (NCBI) 278, 308
RSP_1375 RSP_1375 hypothetical protein (NCBI) 72, 278
RSP_1492 RSP_1492 UbiH/COQ6 monooxygenase family (NCBI) 51, 278
RSP_1493 RSP_1493 Amidase (NCBI) 81, 278
RSP_1499 RSP_1499 Probable gamma-glutamyltranspeptidase (NCBI) 174, 278
RSP_1502 RSP_1502 GAF domain protein (NCBI) 29, 174
RSP_1523 RSP_1523 hypothetical protein (NCBI) 23, 174
RSP_1596 deoB probable phosphopentomutase protein (NCBI) 15, 174
RSP_1597 add adenosine deaminase (NCBI) 15, 174
RSP_1687 hbdA S(+)-beta-hydroxybutyryl CoA dehydrogenase (NCBI) 174, 178
RSP_1690 etfA Electron transfer flavoprotein, alpha subunit (NCBI) 174, 266
RSP_1691 etfB Electron transfer flavoprotein beta-subunit (NCBI) 174, 266
RSP_1757 panC Probable pantoate--beta-alanine ligase (NCBI) 207, 278
RSP_1777 RSP_1777 Putative electron transfer flavoprotein-ubiquinone oxidoreductase precursor (NCBI) 174, 266
RSP_1947 cbbJ Triosephosphate isomerase (NCBI) 278, 372
RSP_2093 RSP_2093 Putative Mrp (Multidrug resistance-associated proteins) family protein (NCBI) 278, 329
RSP_2196 RSP_2196 enoyl-CoA hydratase / 3-hydroxyacyl-CoA dehydrogenase / 3-hydroxybutyryl-CoA epimerase (NCBI) 174, 216
RSP_2197 RSP_2197 Acetoacetyl-CoA thiolase (NCBI) 174, 216
RSP_2198 RSP_2198 hypothetical protein (NCBI) 66, 174
RSP_2208 RSP_2208 ABC sugar transporter, inner membrane subunit (NCBI) 67, 174
RSP_2209 RSP_2209 ABC sugar transporter, inner membrane subunit (NCBI) 67, 174
RSP_2210 RSP_2210 ABC sugar transporter, fused ATPase subunits (NCBI) 174, 358
RSP_2362 RSP_2362 transcriptional regulator, GntR family (NCBI) 174, 265
RSP_2398 RSP_2398 ABC putrescine transporter, inner membrane subunit (NCBI) 174, 291
RSP_2576 adhI Alcohol dehydrogenase class III (NCBI) 52, 278
RSP_2842 trkH1 potassium uptake transporter, transmembrane subunit, TrkH (NCBI) 174, 293
RSP_2857 RSP_2857 D-beta-hydroxybutyrate dehydrogenase (NCBI) 242, 278
RSP_2939 RSP_2939 Predicted transcriptional regulator containing the HTH domain (NCBI) 67, 174
RSP_2940 RSP_2940 hypothetical protein (NCBI) 174, 341
RSP_3101 RSP_3101 periplasmic sensor diguanylate cyclase/phosphodiesterase (NCBI) 23, 174
RSP_3161 RSP_3161 hypothetical protein (NCBI) 63, 174
RSP_3344 RSP_3344 PAS sensor diguanylate cyclase (NCBI) 174, 356
RSP_3345 RSP_3345 hypothetical protein (NCBI) 174, 195
RSP_3583 RSP_3583 Class I monoheme cytochrome c (NCBI) 184, 278
RSP_3826 RSP_3826 hypothetical protein (NCBI) 174, 242
RSP_3827 RSP_3827 Phospholipid/glycerol acyltransferase (NCBI) 174, 293
RSP_3833 fadB enoyl CoA hydratase (NCBI) 59, 278
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_1499
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend