Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_3115

Conserved hypothetical membrane protein (NCBI)

CircVis
Functional Annotations (2)
Function System
Predicted membrane protein cog/ cog
integral to membrane go/ cellular_component
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_3115
(Mouseover regulator name to see its description)

RSP_3115 is regulated by 32 influences and regulates 0 modules.
Regulators for RSP_3115 (32)
Regulator Module Operator
RSP_0601 280 tf
RSP_1014 280 tf
RSP_1225 280 tf
RSP_1272 280 tf
RSP_1274 280 tf
RSP_1590 280 tf
RSP_2681 280 tf
RSP_2939 280 tf
RSP_2963 280 tf
RSP_2965 280 tf
RSP_3324 280 tf
RSP_3405 280 tf
RSP_0087 368 tf
RSP_0394 368 tf
RSP_0794 368 tf
RSP_1191 368 tf
RSP_1231 368 tf
RSP_1272 368 tf
RSP_1274 368 tf
RSP_1741 368 tf
RSP_1892 368 tf
RSP_1922 368 tf
RSP_2027 368 tf
RSP_2130 368 tf
RSP_2681 368 tf
RSP_2853 368 tf
RSP_3094 368 tf
RSP_3095 368 tf
RSP_3179 368 tf
RSP_3385 368 tf
RSP_3418 368 tf
RSP_3700 368 tf

Warning: RSP_3115 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
8274 1.10e+01 aaaggAtttTC
Loader icon
8275 2.10e+02 TTcGaaA.tGT
Loader icon
8432 1.90e+00 cT.CAtga.tTCGgC.AttttctG
Loader icon
8433 3.20e+03 cGaggaTcTCG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_3115

RSP_3115 is enriched for 2 functions in 3 categories.
Enrichment Table (2)
Function System
Predicted membrane protein cog/ cog
integral to membrane go/ cellular_component
Module neighborhood information for RSP_3115

RSP_3115 has total of 45 gene neighbors in modules 280, 368
Gene neighbors (45)
Gene Common Name Description Module membership
RSP_0152 RSP_0152 P-loop ATPase (NCBI) 74, 280
RSP_0235 moaA molybdenum cofactor biosynthesis protein A (NCBI) 132, 368
RSP_0339 RSP_0339 hypothetical protein (NCBI) 280, 286
RSP_0585 osmC osmotically inducible protein OsmC (NCBI) 124, 368
RSP_0723 ald alanine dehydrogenase (NCBI) 273, 280
RSP_0753 SspA Salt-stress induced outer membrane protein (NCBI) 280, 368
RSP_0948 otsA probable OtsA trehalose-6-phosphate synthase (NCBI) 27, 368
RSP_0949 ostB putative trehalose-6-phosphate phosphatase (NCBI) 7, 368
RSP_0969 RSP_0969 putative integral membrane protein (NCBI) 2, 280
RSP_1159 galU UDP-glucose pyrophosphate (NCBI) 132, 368
RSP_1190 RSP_1190 hypothetical protein (NCBI) 215, 368
RSP_1191 RSP_1191 transcriptional regulator, MarR family (NCBI) 215, 368
RSP_1192 RSP_1192 None 215, 368
RSP_1258 RSP_1258 putative hydrolase (NCBI) 231, 280
RSP_1259 RSP_1259 hypothetical protein (NCBI) 280, 289
RSP_1276 RSP_1276 hypothetical protein (NCBI) 215, 368
RSP_1348 RSP_1348 hypothetical protein (NCBI) 280, 362
RSP_1863 RSP_1863 Phosphoglucomutase/phosphomannomutase (NCBI) 280, 308
RSP_1933 RSP_1933 Outer membrane protein, OmpA/MotB family (NCBI) 103, 280
RSP_1956 RSP_1956 hypothetical protein (NCBI) 280, 286
RSP_1985 RSP_1985 hypothetical protein (NCBI) 48, 368
RSP_2225 RSP_2225 hypothetical protein (NCBI) 117, 280
RSP_2231 RSP_2231 hypothetical protein (NCBI) 181, 368
RSP_2294 gloB putative hydroxyacylglutathione hydrolase (glyoxalase II) (GLX II) protein (NCBI) 239, 280
RSP_2335 wrbA trp repressor binding protein WrbA, putative (NCBI) 124, 368
RSP_2379 RSP_2379 hypothetical protein (NCBI) 181, 368
RSP_2384 RSP_2384 hypothetical protein (NCBI) 19, 368
RSP_2414 RSP_2414 hypothetical protein (NCBI) 82, 280
RSP_2430 RSP_2430 hypothetical protein (NCBI) 36, 368
RSP_2569 sqdB sulfolipid (UDP-sulfoquinovose) biosynthesis protein (NCBI) 339, 368
RSP_2634 ccmH Cytochrome c maturation protein, CcmH (NCBI) 215, 368
RSP_2673 RSP_2673 Glucose dehydrogenase (NCBI) 120, 368
RSP_2681 rpoE sigma factor, RpoE (NCBI) 181, 368
RSP_2865 RSP_2865 putative transposase (NCBI) 132, 280
RSP_2965 RSP_2965 Transcriptional regulator, LysR family (NCBI) 19, 280
RSP_3092 RSP_3092 hypothetical protein (NCBI) 202, 368
RSP_3093 RSP_3093 Predicted integral membrane protein (NCBI) 202, 368
RSP_3113 dadA D-amino acid dehydrogenase small subunit (NCBI) 178, 280
RSP_3115 RSP_3115 Conserved hypothetical membrane protein (NCBI) 280, 368
RSP_3138 RSP_3138 Smp-30/Cgr1 family protein (NCBI) 210, 280
RSP_3141 RSP_3141 hypothetical protein (NCBI) 161, 280
RSP_3142 RSP_3142 Na+/solute symporter (NCBI) 161, 280
RSP_3305 abc1 putative ubiquinol-cytochrome-c reductase assembly protein (NCBI) 117, 280
RSP_3327 RSP_3327 possible Rhomboid family membrane protein (NCBI) 2, 280
RSP_3423 xthA1 Probable exodeoxyribonuclease III (NCBI) 2, 280
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_3115
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend