Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_3808

hypothetical protein (NCBI)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_3808
(Mouseover regulator name to see its description)

RSP_3808 is regulated by 29 influences and regulates 0 modules.
Regulators for RSP_3808 (29)
Regulator Module Operator
RSP_0090 114 tf
RSP_0327 114 tf
RSP_0794 114 tf
RSP_1092 114 tf
RSP_1225 114 tf
RSP_1435 114 tf
RSP_1590 114 tf
RSP_2130 114 tf
RSP_2171 114 tf
RSP_2681 114 tf
RSP_2838 114 tf
RSP_2840 114 tf
RSP_2939 114 tf
RSP_2950 114 tf
RSP_3095 114 tf
RSP_3664 114 tf
RSP_0511 67 tf
RSP_0760 67 tf
RSP_1191 67 tf
RSP_1225 67 tf
RSP_2130 67 tf
RSP_2171 67 tf
RSP_2182 67 tf
RSP_2533 67 tf
RSP_2681 67 tf
RSP_2730 67 tf
RSP_2853 67 tf
RSP_2939 67 tf
RSP_3022 67 tf

Warning: RSP_3808 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7854 8.00e+02 atgCtCAAGAt
Loader icon
7855 3.20e+03 AAAtATGA
Loader icon
7948 5.60e+00 tTgAcagacaCAtTT
Loader icon
7949 6.60e+01 CgGAaAAgTgttT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_3808

Warning: No Functional annotations were found!

Module neighborhood information for RSP_3808

RSP_3808 has total of 54 gene neighbors in modules 67, 114
Gene neighbors (54)
Gene Common Name Description Module membership
RSP_0341 RSP_0341 Cytosine deaminase (NCBI) 57, 114
RSP_0342 RSP_0342 putative ABC sugar transporter, inner membrane subunit (NCBI) 57, 114
RSP_0371 RSP_0371 ABC basic amino acid transporter, ATPase subunit (NCBI) 67, 114
RSP_0372 RSP_0372 ABC basic amino acid transporter, solute-binding protein (NCBI) 67, 114
RSP_0373 RSP_0373 ABC basic amino acid transporter, inner membrane subunit (NCBI) 65, 114
RSP_0374 RSP_0374 ABC basic amino acid transporter, inner membrane subunit (NCBI) 65, 114
RSP_0375 RSP_0375 probable glutamine synthetase (NCBI) 65, 67
RSP_0463 RSP_0463 cation efflux transporter, CDF family (NCBI) 22, 67
RSP_0565 RSP_0565 putative phosphatidylcholine synthase (NCBI) 67, 108
RSP_0804 DppD ABC dipeptide transporter, ATPase subunit DppD (NCBI) 67, 114
RSP_0805 DppC ABC dipeptide transporter, inner membrane subunit DppC (NCBI) 57, 67
RSP_0806 DppB ABC dipeptide transporter, inner membrane subunit DppB (NCBI) 114, 204
RSP_0807 DdpA ABC dipeptide transporter, substrate-binding subunit DdpA (NCBI) 114, 204
RSP_0809 RSP_0809 hypothetical protein (NCBI) 67, 207
RSP_0973 RSP_0973 MaoC family protein (NCBI) 67, 118
RSP_1144 Gst Glutathione S-transferase (NCBI) 67, 245
RSP_1145 RSP_1145 Peptidoglycan transglycosylase (NCBI) 67, 254
RSP_1186 RSP_1186 hypothetical protein (NCBI) 59, 67
RSP_1340 RSP_1340 Enoyl-CoA hydratase/isomerase (NCBI) 67, 384
RSP_1538 RSP_1538 probable glucose-1-phosphate cytidylyltransferase (NCBI) 114, 308
RSP_1539 RSP_1539 Glycosyl transferase, family 2 (NCBI) 114, 308
RSP_1568 RSP_1568 Glutamine synthetase (NCBI) 114, 374
RSP_1853 TrkH2 potassium uptake transporter, transmembrane component, TrkH (NCBI) 29, 67
RSP_1854 trkH3 potassium uptake transporter, transmembrane component, TrkH (NCBI) 67, 288
RSP_1998 RSP_1998 Molybdenum cofactor biosynthesis protein A (NCBI) 30, 114
RSP_2154 RSP_2154 hypothetical protein (NCBI) 17, 114
RSP_2157 RSP_2157 ABC transporter, inner membrane subunit (NCBI) 105, 114
RSP_2171 metR transcriptional regulator, LysR family (NCBI) 67, 259
RSP_2205 RSP_2205 hypothetical protein (NCBI) 67, 234
RSP_2206 RSP_2206 hypothetical protein (NCBI) 67, 234
RSP_2207 deoD purine nucleoside phosphorylase (NCBI) 67, 110
RSP_2208 RSP_2208 ABC sugar transporter, inner membrane subunit (NCBI) 67, 174
RSP_2209 RSP_2209 ABC sugar transporter, inner membrane subunit (NCBI) 67, 174
RSP_2211 RSP_2211 ABC transporter, periplasmic substrate-binding protein (NCBI) 67, 70
RSP_2332 RSP_2332 hypothetical protein (NCBI) 67, 72
RSP_2356 RSP_2356 hypothetical protein (NCBI) 93, 114
RSP_2541 tatC twin-arginine translocation system protein, TatC (NCBI) 67, 291
RSP_2561 exoP putative succinoglycan biosynthesis transport protein ExoP (NCBI) 114, 200
RSP_2562 exoM succinoglycan biosynthesis protein exoM (NCBI) 114, 200
RSP_2563 exoA Glycosyl transferase, family 2 (NCBI) 114, 200
RSP_2564 exoL glycosyltransferase, Succinoglycan biosynthesis protein exoL (NCBI) 114, 200
RSP_2715 RSP_2715 hypothetical protein (NCBI) 7, 114
RSP_2730 RSP_2730 Transcriptional regulator, ArsR family (NCBI) 67, 95
RSP_2844 RSP_2844 Putative GTP-binding protein (NCBI) 59, 114
RSP_2939 RSP_2939 Predicted transcriptional regulator containing the HTH domain (NCBI) 67, 174
RSP_3216 RSP_3216 putative DNA repair exonuclease (NCBI) 20, 67
RSP_3248 RSP_3248 ABC peptide transporter, periplasmic binding protein (NCBI) 57, 114
RSP_3313 RSP_3313 possible phage integrase family protein (NCBI) 67, 112
RSP_3330 sac1 Putative sodium/sulfate transporter, DASS family (NCBI) 67, 375
RSP_3367 RSP_3367 hypothetical protein (NCBI) 67, 145
RSP_3802 RSP_3802 hypothetical protein (NCBI) 114, 204
RSP_3803 RSP_3803 hypothetical protein (NCBI) 114, 204
RSP_3804 RSP_3804 hypothetical protein (NCBI) 114, 204
RSP_3808 RSP_3808 hypothetical protein (NCBI) 67, 114
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_3808
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend