Organism : Bacillus cereus ATCC14579 | Module List :
BC1833

hypothetical protein (NCBI ptt file)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC1833
(Mouseover regulator name to see its description)

BC1833 is regulated by 20 influences and regulates 0 modules.
Regulators for BC1833 (20)
Regulator Module Operator
BC0158 52 tf
BC0213 52 tf
BC1253 52 tf
BC3127 52 tf
BC3313 52 tf
BC3332 52 tf
BC3493 52 tf
BC4181 52 tf
BC4289 52 tf
BC4294 52 tf
BC4508 52 tf
BC0647 253 tf
BC2903 253 tf
BC3332 253 tf
BC3476 253 tf
BC4204 253 tf
BC4222 253 tf
BC4336 253 tf
BC5197 253 tf
BC5205 253 tf

Warning: BC1833 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4024 4.60e+03 TgGgGGGAA
Loader icon
4025 2.20e+04 GcACAGcG
Loader icon
4422 4.70e+03 GGtGGcC
Loader icon
4423 2.20e+03 aAAggtgtcGaA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC1833

Warning: No Functional annotations were found!

Module neighborhood information for BC1833

BC1833 has total of 28 gene neighbors in modules 52, 253
Gene neighbors (28)
Gene Common Name Description Module membership
BC0452 BC0452 Ribonuclease BN (NCBI ptt file) 253, 303
BC0606 BC0606 Vancomycin B-type resistance protein vanW (NCBI ptt file) 52, 280
BC0634 BC0634 Spore germination protein KB (NCBI ptt file) 52, 397
BC1103 BC1103 hypothetical protein (NCBI ptt file) 52, 150
BC1186 BC1186 hypothetical protein (NCBI ptt file) 52, 284
BC1658 BC1658 Flagellin (NCBI ptt file) 52, 238
BC1788 BC1788 Lysophospholipase L2 (NCBI ptt file) 209, 253
BC1833 BC1833 hypothetical protein (NCBI ptt file) 52, 253
BC2013 BC2013 Alpha/beta hydrolase (NCBI ptt file) 52, 218
BC2222 BC2222 Oligopeptide transport system permease protein oppB (NCBI ptt file) 253, 339
BC2412 BC2412 ABC transporter permease protein (NCBI ptt file) 163, 253
BC2629 BC2629 Methionyl-tRNA formyltransferase (NCBI ptt file) 209, 253
BC2751 BC2751 IG hypothetical 17041 (NCBI ptt file) 253, 459
BC2813 BC2813 CAAX amino terminal protease family (NCBI ptt file) 253, 487
BC2867 BC2867 Alpha/beta hydrolase (NCBI ptt file) 150, 253
BC2877 BC2877 Zwittermicin A resistance protein ZmaR (NCBI ptt file) 52, 72
BC2899 BC2899 2'-5' RNA ligase (NCBI ptt file) 52, 218
BC2928 BC2928 hydrolase (NCBI ptt file) 253, 307
BC3127 BC3127 Transcriptional regulators, LysR family (NCBI ptt file) 52, 359
BC3171 BC3171 Methyltransferase (NCBI ptt file) 108, 253
BC3205 BC3205 Succinoglycan biosynthesis protein (NCBI ptt file) 26, 52
BC3215 BC3215 hypothetical protein (NCBI ptt file) 30, 253
BC3241 BC3241 Hydrogenase maturation protein hypF (NCBI ptt file) 52, 104
BC3339 BC3339 Phosphohydrolase (MutT/nudix family protein) (NCBI ptt file) 52, 146
BC3390 BC3390 Nitroreductase family protein (NCBI ptt file) 52, 402
BC4217 BC4217 ABC transporter permease protein (NCBI ptt file) 52, 150
BC4218 BC4218 ABC transporter permease protein (NCBI ptt file) 52, 150
BC4350 BC4350 hypothetical Exported Protein (NCBI ptt file) 52, 253
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC1833
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend