Organism : Clostridium acetobutylicum | Module List :
CAC2412

Hypothetical protein (NCBI ptt file)

CircVis
Functional Annotations (1)
Function System
Uncharacterized conserved protein cog/ cog
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC2412
(Mouseover regulator name to see its description)

CAC2412 is regulated by 18 influences and regulates 0 modules.
Regulators for CAC2412 (18)
Regulator Module Operator
CAC0859 279 tf
CAC0876 279 tf
CAC1430 279 tf
CAC1509 279 tf
CAC1689 279 tf
CAC2616 279 tf
CAC2794 279 tf
CAC2859 279 tf
CAC3729 279 tf
CAC0115 105 tf
CAC0402 105 tf
CAC1340 105 tf
CAC1404 105 tf
CAC1799 105 tf
CAC1800 105 tf
CAC2842 105 tf
CAC3438 105 tf
CAC3606 105 tf

Warning: CAC2412 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6862 1.10e+04 ggAGGtaagat
Loader icon
6863 4.30e+03 GTGGGG
Loader icon
7210 2.20e-05 .gtGgAGGtAA
Loader icon
7211 1.70e+04 gGAgAggGtTT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC2412

CAC2412 is enriched for 1 functions in 3 categories.
Enrichment Table (1)
Function System
Uncharacterized conserved protein cog/ cog
Module neighborhood information for CAC2412

CAC2412 has total of 47 gene neighbors in modules 105, 279
Gene neighbors (47)
Gene Common Name Description Module membership
CAC0003 CAC0003 Small conserved protein, ortholog of YAAA B.subtilis (NCBI ptt file) 105, 278
CAC0011 CAC0011 Uncharacterized conserved of ErfK family (NCBI ptt file) 113, 279
CAC0205 CAC0205 Predicted phosphohydrolases, Icc family (NCBI ptt file) 62, 279
CAC0262 CAC0262 Tryptophan-rich possible sensory protein, TSPO homolog (NCBI ptt file) 95, 279
CAC0354 CAC0354 Uncharacterized membrane protein (NCBI ptt file) 279, 312
CAC0604 CAC0604 Acyl carrier protein phosphodiesterase (NCBI ptt file) 57, 279
CAC0739 CAC0739 Predicted membrane protein (NCBI ptt file) 105, 142
CAC0793 CAC0793 Uncharacterized conserved protein of probably eukaryotic origin (NCBI ptt file) 279, 314
CAC0964 CAC0964 Hypothetical protein (NCBI ptt file) 105, 210
CAC0979 CAC0979 Uncharacterized protein containing two CBS domains (NCBI ptt file) 87, 105
CAC1021 CAC1021 Predicted Fe-S oxidoreductases (NCBI ptt file) 28, 105
CAC1269 CAC1269 Cation transport ATPase (NCBI ptt file) 30, 105
CAC1520 CAC1520 Hypothetical protein (NCBI ptt file) 118, 279
CAC1627 gyrB DNA gyrase B subunit (NCBI ptt file) 105, 142
CAC1628 gyrA DNA gyrase A subunit (NCBI ptt file) 2, 105
CAC1654 CAC1654 Zn-dependent metalloprotease, insulinase family (NCBI ptt file) 105, 281
CAC1657 CAC1657 Uncharacterized conserved protein, yisX B.subtilis ortholog (NCBI ptt file) 279, 326
CAC1662 CAC1662 Hypothetical protein (NCBI ptt file) 142, 279
CAC1732 CAC1732 Hypothetical protein (NCBI ptt file) 38, 105
CAC1985 CAC1985 Hypothetical protein (NCBI ptt file) 279, 300
CAC2034 CAC2034 Hypothetical protein (NCBI ptt file) 38, 279
CAC2089 CAC2089 Stage III sporulation protein AE, SpoIIIAE (NCBI ptt file) 263, 279
CAC2345 CAC2345 Glycosyltransferase (NCBI ptt file) 100, 279
CAC2352 CAC2352 Hypothetical protein (NCBI ptt file) 279, 330
CAC2353 CAC2353 Hypothetical protein (NCBI ptt file) 279, 330
CAC2354 CAC2354 Nifs family aminotransferase (NCBI ptt file) 41, 279
CAC2363 CAC2363 Uncharacterized protein, YtxC B.subtilis homolog (NCBI ptt file) 95, 279
CAC2409 CAC2409 Transglutaminase-like enzyme, putative cysteine protease (NCBI ptt file) 59, 105
CAC2411 CAC2411 Zn-dependent protease of MPP family (NCBI ptt file) 105, 335
CAC2412 CAC2412 Hypothetical protein (NCBI ptt file) 105, 279
CAC2413 CAC2413 Predicted membrane protein (NCBI ptt file) 105, 283
CAC2459 CAC2459 2-oxoacid:ferredoxin oxidoreductase, alpha subunit (NCBI ptt file) 142, 279
CAC2464 CAC2464 Hypothetical protein, CF-40 family (NCBI ptt file) 105, 163
CAC2569 CAC2569 NimC/NimA family protein (NCBI ptt file) 279, 320
CAC2630 CAC2630 Uncharaterized conserved protein, YOME B.subtilis ortholog (NCBI ptt file) 19, 105
CAC2679 CAC2679 Pullulanase (NCBI ptt file) 267, 279
CAC2842 CAC2842 Transcription accessory protein TEX, RNA-binding protein containing S1 domain (NCBI ptt file) 105, 310
CAC2843 CAC2843 Protein containing aminopeptidase domain (iap family) (NCBI ptt file) 39, 279
CAC2863 CAC2863 Predicted membrane protein (NCBI ptt file) 102, 279
CAC2941 CAC2941 HAD superfamily hydrolase (NCBI ptt file) 47, 279
CAC2945 CAC2945 Possible phosphoglycerate dehydrogenase (NCBI ptt file) 279, 363
CAC3031 hisC Histidinol-phosphate aminotransferase (NCBI ptt file) 142, 279
CAC3049 CAC3049 Glycosyltransferase (NCBI ptt file) 105, 311
CAC3204 CAC3204 Cell cycle protein MesJ ortholog, ATPase of the PP-loop superamily (NCBI ptt file) 142, 279
CAC3217 spoVC Stage V sporulation protein C, peptidyl-tRNA hydrolase (NCBI ptt file) 63, 105
CAC3223 spoVG Stage V sporulation protein G (NCBI ptt file) 105, 289
CAC3287 CAC3287 Predicted membrane protein (NCBI ptt file) 105, 281
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC2412
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend