Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU1267
hypothetical protein DVU1267
Functional Annotations (1)
Function | System |
---|---|
IV_pilin_GFxxxE | tigr/ tigrfam |
Regulation information for DVU1267
(Mouseover regulator name to see its description)
Regulator | Module | Operator |
---|---|---|
DVU0813 DVU0230 |
158 | combiner |
DVU0936 | 158 | tf |
DVU1628 DVU0813 |
158 | combiner |
DVU1690 | 158 | tf |
DVU1788 | 158 | tf |
DVU1788 DVU2690 |
158 | combiner |
DVU2086 DVU0744 |
158 | combiner |
DVU2086 DVU2909 |
158 | combiner |
DVU2547 | 158 | tf |
DVU2547 DVU1788 |
158 | combiner |
DVU2547 DVU2086 |
158 | combiner |
DVU3255 | 158 | tf |
DVUA0151 DVU1788 |
158 | combiner |
DVU0277 | 227 | tf |
DVU0277 DVU0916 |
227 | combiner |
DVU0619 DVU0230 |
227 | combiner |
DVU0744 DVU2690 |
227 | combiner |
DVU0813 DVU0230 |
227 | combiner |
DVU2086 DVU0744 |
227 | combiner |
DVU2547 DVU0230 |
227 | combiner |
DVU2567 | 227 | tf |
DVU2567 DVU0813 |
227 | combiner |
DVU2909 DVU1730 |
227 | combiner |
DVU2909 DVU2690 |
227 | combiner |
Motif information (de novo identified motifs for modules)
There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.
Motif Id | e-value | Consensus | Motif Logo | RegPredict |
---|---|---|---|---|
301 | 2.70e+03 | tCCtGTTG | RegPredict | |
302 | 2.90e+03 | gATcAcGCc.CaCgtCaacGAtGc | RegPredict | |
433 | 4.10e+03 | CTGCTGaCGatG | RegPredict | |
434 | 8.30e+03 | AtcatCGcctt | RegPredict |
Functional Enrichment for DVU1267
Function | System |
---|---|
IV_pilin_GFxxxE | tigr/ tigrfam |
Module neighborhood information for DVU1267
Gene | Common Name | Description | Module membership |
---|---|---|---|
DVU0242 | SecC motif-containing protein | 114, 158 | |
DVU0525 | MarR family transcriptional regulator | 227, 289 | |
DVU0758 | hypothetical protein DVU0758 | 120, 158 | |
DVU0759 | M29 family peptidase | 13, 227 | |
DVU0825 | secA | preprotein translocase subunit SecA | 218, 227 |
DVU0856 | hemB | delta-aminolevulinic acid dehydratase | 57, 227 |
DVU0857 | radical SAM domain-containing protein | 158, 218 | |
DVU0864 | glycoprotease family protein | 57, 227 | |
DVU0865 | membrane-associated zinc metalloprotease | 158, 227 | |
DVU0994 | hypothetical protein DVU0994 | 158, 218 | |
DVU1191 | ATP-dependent protease La | 57, 227 | |
DVU1193 | radC | DNA repair protein RadC | 57, 227 |
DVU1267 | hypothetical protein DVU1267 | 158, 227 | |
DVU1278 | ftsH | cell division protein FtsH | 120, 158 |
DVU1336 | clpX | ATP-dependent protease ATP-binding subunit ClpX | 120, 158 |
DVU1337 | lon | ATP-dependent protease La | 114, 158 |
DVU1432 | radical SAM domain-containing protein | 57, 227 | |
DVU1467 | hslU | ATP-dependent protease ATP-binding subunit HslU | 119, 227 |
DVU1602 | clpA | ATP-dependent Clp protease, ATP-binding subunit ClpA | 158, 193 |
DVU1788 | rpoD | RNA polymerase sigma-70 factor | 28, 227 |
DVU1789 | dnaG | DNA primase | 28, 227 |
DVU1855 | integrase, truncation | 90, 227 | |
DVU1874 | clpB | ATP-dependent Clp protease, ATP-binding subunit ClpB | 4, 158 |
DVU2310 | metallo-beta-lactamase family protein | 104, 158 | |
DVU2363 | thiM | hydroxyethylthiazole kinase | 66, 227 |
DVU2470 | membrane protein | 158, 194 | |
DVU2487 | hypothetical protein DVU2487 | 66, 227 | |
DVU2488 | hypothetical protein DVU2488 | 66, 227 | |
DVU2554 | hypothetical protein DVU2554 | 119, 227 | |
DVU3243 | dnaJ | chaperone protein DnaJ | 28, 227 |
DVU3315 | pyrK | dihydroorotate dehydrogenase, electron transfer subunit | 66, 227 |
DVU3365 | fmt | methionyl-tRNA formyltransferase | 28, 227 |
DVU3366 | def | polypeptide deformylase | 227, 261 |
Gene Page Help
Network Tab
If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.
Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.
Regulation Tab
Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.
If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.
You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".
For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.
Motifs Tab
Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.
Functions Tab
Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.
Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.
Module Members Tab
Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.
Help Tab
This help page. More general help can be accessed by clicking help menu in the main navigation bar.
CircVis
Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;- 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
- 2. Source gene
- 3. Target genes (other module members)
- 4. Interactions between source and target genes for a particular module
- 5. Module(s) that source gene and target genes belong to
- 6. Visualisation legend
Social Tab
Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.
Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.
In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.