Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU2482 fdnG-2

formate dehydrogenase subunit alpha, selenocysteine-containing

CircVis
Functional Annotations (16)
Function System
Anaerobic dehydrogenases, typically selenocysteine-containing cog/ cog
transporter activity go/ molecular_function
cytoplasm go/ cellular_component
electron transport go/ biological_process
transport go/ biological_process
formate dehydrogenase (NAD+) activity go/ molecular_function
formate dehydrogenase complex go/ cellular_component
membrane go/ cellular_component
hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides go/ molecular_function
molybdenum ion binding go/ molecular_function
cellular respiration go/ biological_process
Glyoxylate and dicarboxylate metabolism kegg/ kegg pathway
Methane metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Microbial metabolism in diverse environments kegg/ kegg pathway
formate-DH-alph tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for DVU2482
(Mouseover regulator name to see its description)

DVU2482 is regulated by 24 influences and regulates 0 modules.
Regulators for DVU2482 fdnG-2 (24)
Regulator Module Operator
DVU0110
DVU1419
192 combiner
DVU1572
DVU2547
192 combiner
DVU2275 192 tf
DVU2527
DVU1949
192 combiner
DVU2547 192 tf
DVU2547
DVU0110
192 combiner
DVU2547
DVU2675
192 combiner
DVU2547
DVU2799
192 combiner
DVU2557 192 tf
DVU2557
DVU2675
192 combiner
DVU2675 192 tf
DVU2909 192 tf
DVU3066 192 tf
DVU0230
DVU1949
348 combiner
DVU0277
DVU0118
348 combiner
DVU0277
DVU2894
348 combiner
DVU0653
DVU2251
348 combiner
DVU0946
DVU2251
348 combiner
DVU1788 348 tf
DVU2547
DVU0110
348 combiner
DVU2547
DVU2251
348 combiner
DVU2547
DVU3193
348 combiner
DVU2909 348 tf
DVU3220
DVU2251
348 combiner

Warning: DVU2482 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.

Motif Table (4)
Motif Id e-value Consensus Motif Logo RegPredict
367 1.00e-02 gGcttTGGCGT
Loader icon
RegPredict
368 4.20e+02 GCAtCGcAtgt
Loader icon
RegPredict
661 6.00e+02 CtTTccaGCcgtcCcGACgtCgGa
Loader icon
RegPredict
662 1.60e+03 ctgaC.tcCaTaacggtctggtac
Loader icon
RegPredict
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for DVU2482

DVU2482 is enriched for 16 functions in 3 categories.
Enrichment Table (16)
Function System
Anaerobic dehydrogenases, typically selenocysteine-containing cog/ cog
transporter activity go/ molecular_function
cytoplasm go/ cellular_component
electron transport go/ biological_process
transport go/ biological_process
formate dehydrogenase (NAD+) activity go/ molecular_function
formate dehydrogenase complex go/ cellular_component
membrane go/ cellular_component
hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides go/ molecular_function
molybdenum ion binding go/ molecular_function
cellular respiration go/ biological_process
Glyoxylate and dicarboxylate metabolism kegg/ kegg pathway
Methane metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Microbial metabolism in diverse environments kegg/ kegg pathway
formate-DH-alph tigr/ tigrfam
Module neighborhood information for DVU2482

DVU2482 has total of 69 gene neighbors in modules 192, 348
Gene neighbors (69)
Gene Common Name Description Module membership
DVU0019 ngr nigerythrin 60, 348
DVU0092 sensory box histidine kinase 145, 348
DVU0175 tungsten formylmethanofuran dehydrogenase family protein/molybdopterin binding protein 192, 348
DVU0260 response regulator 346, 348
DVU0263 acidic cytochrome c3 346, 348
DVU0264 ferredoxin, 4Fe-4S 346, 348
DVU0402 dsvA dissimilatory sulfite reductase subunit alpha 292, 348
DVU0403 dvsB dissimilatory sulfite reductase subunit beta 292, 348
DVU0404 dissimilatory sulfite reductase B 292, 348
DVU0456 DHH family protein 153, 192
DVU0580 moaA molybdenum cofactor biosynthesis protein A 192, 281
DVU0600 ldh L-lactate dehydrogenase 192, 281
DVU0626 ilvN-1 acetolactate synthase small subunit 192, 298
DVU0627 ptB phosphotransbutyrylase 192, 229
DVU0701 glcB malate synthase G 192, 348
DVU0979 dihydroxyacetone kinase subunit DhaK 60, 348
DVU0980 DAK2 domain-containing protein 6, 348
DVU1037 mercuric reductase 181, 192
DVU1179 aor tungsten-containing aldehyde:ferredoxin oxidoreductase 157, 348
DVU1396 hypothetical protein DVU1396 192, 274
DVU1413 hypothetical protein DVU1413 192, 296
DVU1420 Hpt domain-containing protein 109, 192
DVU1471 HSP20 family protein 71, 192
DVU1472 ATP-dependent protease 115, 192
DVU1592 arginine N-succinyltransferase subunit beta 192, 274
DVU1594 cheA-1 chemotaxis protein CheA 192, 274
DVU1596 cheB-1 protein-glutamate methylesterase CheB 192, 274
DVU1613 glutamate synthase subunit beta 192, 236
DVU1614 iron-sulfur cluster-binding protein 6, 192
DVU1681 mreB-2 rod shape-determining protein MreB 318, 348
DVU1684 gcvT glycine cleavage system T protein 318, 348
DVU1685 16S ribosomal RNA methyltransferase RsmE 318, 348
DVU1686 recombination factor protein RarA 318, 348
DVU1917 hysB periplasmic 139, 348
DVU1918 hysA periplasmic 139, 348
DVU1921 hynB-1 periplasmic 229, 348
DVU1922 hynA-1 periplasmic 229, 348
DVU1958 sensory box histidine kinase 69, 192
DVU1986 hypothetical protein DVU1986 192, 198
DVU2109 hypothetical protein DVU2109 236, 348
DVU2349 carbohydrate phosphorylase family protein 60, 192
DVU2360 FAD/NAD-binding family oxidoreductase 115, 192
DVU2421 4-oxalocrotonate tautomerase family protein 192, 274
DVU2422 nitroreductase family protein 192, 274
DVU2481 formate dehydrogenase subunit beta 77, 348
DVU2482 fdnG-2 formate dehydrogenase subunit alpha, selenocysteine-containing 192, 348
DVU2483 cytochrome c family protein 77, 348
DVU2514 pyk pyruvate kinase 249, 348
DVU2557 birA birA bifunctional protein 148, 348
DVU2895 hypothetical protein DVU2895 115, 192
DVU2968 sensor histidine kinase/response regulator 148, 192
DVU2976 hypothetical protein DVU2976 83, 192
DVU3037 rhodanese-like domain-containing protein 192, 348
DVU3077 AhpC/TSA family protein 192, 269
DVU3147 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 192, 214
DVU3148 malQ 4-alpha-glucanotransferase 27, 192
DVU3183 rbO desulfoferrodoxin 60, 348
DVU3184 rubredoxin 60, 348
DVU3185 roO rubredoxin-oxygen oxidoreductase 60, 348
DVU3217 hypothetical protein DVU3217 109, 192
DVU3262 fdrA fumarate reductase flavoprotein subunit 153, 348
DVU3263 frdB fumarate reductase iron-sulfur subunit 148, 348
DVU3282 ADP-ribosylglycohydrolase family protein 109, 192
DVU3293 acetolactate synthase 60, 348
DVU3294 aldehyde dehydrogenase family protein 153, 348
DVU3319 putA proline dehydrogenase/delta-1-pyrroline-5-carboxylate dehydrogenase 153, 348
DVUA0021 hypothetical protein DVUA0021 61, 192
DVUA0023 ABC transporter permease 192, 274
DVUA0091 katA catalase 192, 274
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for DVU2482
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend