Organism : Halobacterium salinarum NRC-1 | Module List :
VNG0196H

hypothetical protein VNG0196H

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for VNG0196H
(Mouseover regulator name to see its description)

VNG0196H is regulated by 13 influences and regulates 0 modules.
Regulators for VNG0196H (13)
Regulator Module Operator
VNG1179C 30 tf
VNG1237C 30 tf
VNG1786H 30 tf
VNG2112C 30 tf
VNG6143H 30 tf
VNG6438G 30 tf
VNG1510C 267 tf
VNG1179C 281 tf
VNG1237C 281 tf
VNG1886C 281 tf
VNG2112C 281 tf
VNG6143H 281 tf
VNG6438G 281 tf

Warning: VNG0196H Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 6 motifs predicted.

Motif Table (6)
Motif Id e-value Consensus Motif Logo
1037 1.10e-03 aAaagaAAT.tTCTctTCAcgaat
Loader icon
1038 1.90e-03 taCgagacaa.gccgacatt.act
Loader icon
1467 4.30e+01 gaCG.cgac.tcgacggcctc
Loader icon
1468 4.30e+02 tgGTtTaaaCT
Loader icon
1491 2.00e+00 aAAatGtgTaTG
Loader icon
1492 4.30e+03 ATcaTCTGAAT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for VNG0196H

Warning: No Functional annotations were found!

Module neighborhood information for VNG0196H

VNG0196H has total of 67 gene neighbors in modules 30, 267, 281
Gene neighbors (67)
Gene Common Name Description Module membership
VNG0020H hypothetical protein VNG0020H 30, 108, 247
VNG0022H hypothetical protein VNG0022H 30, 254
VNG0023H hypothetical protein VNG0023H 30, 254, 290
VNG0025H hypothetical protein VNG0025H 118, 267
VNG0026C hypothetical protein VNG0026C 267
VNG0051G rfbU1 LPS biosynthesis protein 56, 267
VNG0068H hypothetical protein VNG0068H 254, 267
VNG0085G moaA hypothetical protein VNG0085G 254, 267
VNG0107G rmeS RmeS 247, 267
VNG0116H hypothetical protein VNG0116H 264, 267
VNG0120H hypothetical protein VNG0120H 264, 267
VNG0139H hypothetical protein VNG0139H 17, 18, 30, 196
VNG0140H hypothetical protein VNG0140H 18, 26, 30, 239
VNG0142C hypothetical protein VNG0142C 254, 267
VNG0160G boa1 bacterio-opsin activator-like protein 251, 267
VNG0167H hypothetical protein VNG0167H 252, 267
VNG0172G mutS2 DNA mismatch repair protein MutS 267
VNG0190C hypothetical protein VNG0190C 54, 267
VNG0196H hypothetical protein VNG0196H 30, 267, 281
VNG0205H hypothetical protein VNG0205H 118, 267
VNG0238H hypothetical protein VNG0238H 267
VNG0256H hypothetical protein VNG0256H 241, 267
VNG0294G pnm N-methyltransferase-like protein 194, 267
VNG0306C hypothetical protein VNG0306C 158, 267
VNG0332C hypothetical protein VNG0332C 264, 267
VNG0347H hypothetical protein VNG0347H 83, 267
VNG0406C egsA NAD(P)-dependent glycerol-1-phosphate dehydrogenase 267
VNG0469H hypothetical protein VNG0469H 30, 91
VNG0470G trp3 daunorubicin resistance ABC transporter ATP-binding protein 30, 91
VNG0529H hypothetical protein VNG0529H 267
VNG0532H hypothetical protein VNG0532H 30, 70, 108
VNG0811H hypothetical protein VNG0811H 30, 87, 138, 147
VNG0926H hypothetical protein VNG0926H 30, 108
VNG1026H hypothetical protein VNG1026H 267
VNG1270H hypothetical protein VNG1270H 18, 30, 37, 42
VNG1271H hypothetical protein VNG1271H 18, 30, 37
VNG1335G phr2 photolyase/cryptochrome 267
VNG1395G htr9 Htr9 13, 60, 281
VNG1590H hypothetical protein VNG1590H 13, 281
VNG1646G trpG1 anthranilate synthase subunit beta 30, 48, 64, 87
VNG1648G trpF hypothetical protein VNG1648G 4, 5, 28, 30, 48, 64, 87
VNG1649G trpD anthranilate phosphoribosyltransferase 28, 30, 48, 64, 87, 92
VNG1650H hypothetical protein VNG1650H 4, 5, 30, 34, 35, 245, 295
VNG1772G pgp 3-phosphoglycerate kinase 267
VNG1952H hypothetical protein VNG1952H 18, 28, 30, 42, 68, 80, 91, 108, 121, 135
VNG1953C hypothetical protein VNG1953C 13, 18, 30, 34, 42, 80, 91, 108, 115, 121
VNG1956H hypothetical protein VNG1956H 18, 30, 34, 42, 80, 91, 108, 115, 121
VNG1986C hypothetical protein VNG1986C 17, 26, 30, 31, 108
VNG2279H hypothetical protein VNG2279H 267
VNG2368G rad24b ski2-like helicase 267
VNG2370C hypothetical protein VNG2370C 267
VNG6152H hypothetical protein VNG6152H 4, 13, 15, 26, 31, 37, 142, 189, 272, 281, 297
VNG6191H hypothetical protein VNG6191H 17, 30, 34, 38, 41, 44, 80, 91
VNG6196G phoT2 sodium-dependent phosphate transporter 30, 36, 41, 80, 87, 89
VNG6258C hypothetical protein VNG6258C 18, 30, 108
VNG6292C hypothetical protein VNG6292C 17, 18, 30, 89
VNG6321H hypothetical protein VNG6321H 267
VNG6378H hypothetical protein VNG6378H 13, 21, 53, 60, 121, 189, 281
VNG6390H hypothetical protein VNG6390H 4, 26, 30, 34, 35, 245, 295
VNG6400H hypothetical protein VNG6400H 18, 30, 80, 133, 245, 290
VNG6416H hypothetical protein VNG6416H 13, 15, 21, 41, 60, 281
VNG6418H hypothetical protein VNG6418H 13, 18, 21, 41, 60, 281
VNG6419H hypothetical protein VNG6419H 13, 21, 60, 281
VNG6427H hypothetical protein VNG6427H 17, 18, 30, 62, 74, 89, 107
VNG6431H hypothetical protein VNG6431H 17, 26, 30, 38, 178
VNG7011 repH plasmid replication protein RepH 17, 18, 30, 107, 122, 224, 287
VNG7128 hypothetical protein VNG7128 21, 60, 281
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for VNG0196H
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend