Organism : Methanococcus maripaludis S2 | Module List :
MMP1606

flavoprotein:DNA/pantothenate metabolism flavoprotein

CircVis
Functional Annotations (6)
Function System
Phosphopantothenoylcysteine synthetase/decarboxylase cog/ cog
phosphopantothenate--cysteine ligase activity go/ molecular_function
phosphopantothenoylcysteine decarboxylase activity go/ molecular_function
Pantothenate and CoA biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
coaBC_dfp tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for MMP1606
(Mouseover regulator name to see its description)

MMP1606 is regulated by 8 influences and regulates 0 modules.
Regulators for MMP1606 (8)
Regulator Module Operator
MMP1065 13 tf
MMP1447 13 tf
MMP0032
MMP0257
1 combiner
MMP0209 1 tf
MMP1447 1 tf
H2 49 ef
MMP0460 49 tf
MMP0499
MMP1065
49 combiner

Warning: MMP1606 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 6 motifs predicted.

Motif Table (6)
Motif Id e-value Consensus Motif Logo
663 3.00e+01 CgacCC.c.agG
Loader icon
664 7.60e+03 CcgcTg
Loader icon
687 9.70e+00 tCgcgGg.aCT
Loader icon
688 1.90e+04 GGatCTtGGGG
Loader icon
759 1.20e+00 tagATatattGgtGa
Loader icon
760 1.90e+01 caAgTcTGgTGg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for MMP1606

MMP1606 is enriched for 6 functions in 3 categories.
Enrichment Table (6)
Function System
Phosphopantothenoylcysteine synthetase/decarboxylase cog/ cog
phosphopantothenate--cysteine ligase activity go/ molecular_function
phosphopantothenoylcysteine decarboxylase activity go/ molecular_function
Pantothenate and CoA biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
coaBC_dfp tigr/ tigrfam
Module neighborhood information for MMP1606

MMP1606 has total of 86 gene neighbors in modules 1, 13, 49
Gene neighbors (86)
Gene Common Name Description Module membership
Antisense_13 None 49, 129
Antisense_2 None 1, 22
Antisense_23 None 1, 117
Antisense_24 None 5, 49, 90
Antisense_5 None 1, 22
MMP0020 nickel responsive regulator 49, 123
MMP0022 hypothetical protein MMP0022 13, 66
MMP0023 hypothetical protein MMP0023 13, 66
MMP0036 tfe transcription initiation factor E subunit alpha 49, 87, 92, 129
MMP0052 putative CBS domain-containing signal transduction protein 13, 117
MMP0063 argB acetylglutamate kinase 49, 151
MMP0084 hypothetical protein MMP0084 49, 106
MMP0119 birA biotin--acetyl-CoA-carboxylase ligase 1, 75, 142
MMP0153 aksA trans-homoaconitate synthase 1, 143
MMP0154 hypothetical protein MMP0154 1, 13
MMP0166 MATE family drug/sodium antiporter 1, 28
MMP0167 ABC transporter ATP-binding protein 1, 28
MMP0168 ParR family transcriptional regulator 1, 28
MMP0176 cell division protein CDC48 1, 46
MMP0180 ribC riboflavin synthase 1, 58
MMP0226 ExsB family transcriptional regulator 13, 117
MMP0239 hypothetical protein MMP0239 1, 49, 75, 106
MMP0268 truA tRNA pseudouridine synthase A 49, 51
MMP0277 TraB family protein 49, 90
MMP0279 mptG beta-ribofuranosylaminobenzene 5'-phosphate synthase family protein 49, 90
MMP0302 hypothetical protein MMP0302 49, 90
MMP0307 hypothetical protein MMP0307 33, 49, 153
MMP0336 hjc Holliday junction resolvase 13, 94
MMP0337 hypothetical protein MMP0337 13, 94
MMP0420 CBS domain-containing protein 13, 106
MMP0421 hypothetical protein MMP0421 13, 83
MMP0422 hypothetical protein MMP0422 13, 83
MMP0449 ferredoxin 13, 70
MMP0450 ferredoxin 1, 70
MMP0451 hypothetical protein MMP0451 1, 70
MMP0536 hypothetical protein MMP0536 1, 28
MMP0562 hypothetical protein MMP0562 49, 124
MMP0608 2-hydroxyglutaryl-CoA dehydratase subunit A-like protein 1, 28
MMP0633 rubrerythrin 13, 50
MMP0643 hypothetical protein MMP0643 49, 65
MMP0685 N-6 adenine-specific DNA methylase 1, 144
MMP0686 fructose-bisphosphate aldolase 13, 121
MMP0687 tpiA triosephosphate isomerase 8, 13
MMP0709 hypothetical protein MMP0709 13, 156
MMP0725 putative integral membrane protein 49, 75, 90, 151
MMP0727 uvrB excinuclease ABC subunit B 49, 142
MMP0742 hypothetical protein MMP0742 23, 49
MMP0876 cofG FO synthase subunit 1 1, 129
MMP0902 hypothetical protein MMP0902 12, 49, 55
MMP0918 asnB glutamine-hydrolyzing asparagine synthase 49, 115
MMP1016 putative CBS domain-containing signal transduction protein 13, 123
MMP1058 hypothetical protein MMP1058 13, 83
MMP1071 hypothetical protein MMP1071 1, 106
MMP1072 aminotransferase (subgroup I) aromatic aminotransferase 1, 106
MMP1140 fdxA ferredoxin 1, 46
MMP1185 hydrogen uptake protein:hydrogenase maturation protease HycI 1, 46
MMP1218 hypothetical protein MMP1218 12, 46, 49
MMP1235 moaE molybdopterin biosynthesis MoaE 49, 55, 106, 117, 150
MMP1238 bioB biotin synthase 1, 153
MMP1240 Sep-tRNA:Cys-tRNA synthetase 1, 55
MMP1241 hypothetical protein MMP1241 1, 55, 94, 117
MMP1282 hypothetical protein MMP1282 49, 102, 106, 150
MMP1283 hypothetical protein MMP1283 49, 102, 150
MMP1290 GTP-binding protein 49, 115
MMP1343 hypothetical protein MMP1343 49, 151
MMP1345 undecaprenyl pyrophospahte synthetase-like protein 49, 111
MMP1346 basic helix-loop-helix dimerization domain-containing protein 49, 67, 142
MMP1358 ferredoxin 13, 21
MMP1372 manB phosphomannomutase 49, 94, 152
MMP1397 smc1 structural maintenance of chromosome protein 13, 83
MMP1430 cation transporter 49, 115
MMP1431 2pgk 2-phosphoglycerate kinase 49, 51
MMP1533 hypothetical protein MMP1533 13, 123
MMP1534 hypothetical protein MMP1534 13, 123
MMP1549 AP endonuclease 1, 94, 152
MMP1550 NADP oxidoreductase, coenzyme F420-dependent 1, 58
MMP1551 ffh signal recognition particle protein Srp54 49, 55, 83
MMP1603 ferredoxin 12, 49
MMP1605 pyruvate kinase 1, 54, 146, 166
MMP1606 flavoprotein:DNA/pantothenate metabolism flavoprotein 1, 13, 49
MMP1607 hypothetical protein MMP1607 49, 55, 83
MMP1613 ssh10b_1 DNA/RNA-binding protein albA 13, 50
MMP1635 redox-active disulfide protein 1 13, 50
MMP1637 hypothetical protein MMP1637 13, 19
Unanno_42 None 49, 90
Unanno_62 None 49, 90
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for MMP1606
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend