Organism : Bacillus subtilis | Module List :
BSU06010 ydiL

putative membrane protease (RefSeq)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU06010
(Mouseover regulator name to see its description)

BSU06010 is regulated by 30 influences and regulates 0 modules.
Regulators for BSU06010 ydiL (30)
Regulator Module Operator
BSU00800 39 tf
BSU02000 39 tf
BSU05970 39 tf
BSU06540 39 tf
BSU08730 39 tf
BSU13870 39 tf
BSU14480 39 tf
BSU18760 39 tf
BSU35030 39 tf
BSU36600 39 tf
BSU40800 39 tf
BSU04650 128 tf
BSU05050 128 tf
BSU05320 128 tf
BSU06860 128 tf
BSU07590 128 tf
BSU14740 128 tf
BSU15640 128 tf
BSU15970 128 tf
BSU16470 128 tf
BSU16900 128 tf
BSU19100 128 tf
BSU23090 128 tf
BSU25250 128 tf
BSU25760 128 tf
BSU27320 128 tf
BSU28820 128 tf
BSU36420 128 tf
BSU38700 128 tf
BSU38910 128 tf

Warning: BSU06010 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5038 5.10e-01 aAAggaAG
Loader icon
5039 1.50e+02 AAAaaatgA.g
Loader icon
5208 3.10e+01 a.gaAAaAgag
Loader icon
5209 1.90e+02 GGgGGTgAaA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU06010

Warning: No Functional annotations were found!

Module neighborhood information for BSU06010

BSU06010 has total of 56 gene neighbors in modules 39, 128
Gene neighbors (56)
Gene Common Name Description Module membership
BSU00480 yabJ putative enzyme resulting in alteration of gene expression (RefSeq) 128, 221
BSU02100 cypC fatty acid beta-hydroxylating cytochrome P450 (RefSeq) 10, 39
BSU05280 ydeO putative integral inner membrane protein (RefSeq) 128, 378
BSU06000 ydiK hypothetical protein (RefSeq) 39, 311
BSU06010 ydiL putative membrane protease (RefSeq) 39, 128
BSU06020 groES co-chaperonin GroES (RefSeq) 39, 150
BSU06030 groEL chaperonin GroEL (RefSeq) 39, 150
BSU06110 ydjA BsuM intrinsic DNA restriction component (RefSeq) 128, 199
BSU06590 yerD putative flavoenzyme (RefSeq) 10, 39
BSU06820 yeeG putative phage receptor protein (RefSeq) 39, 222
BSU07850 yfkM general stress protein 18 (RefSeq) 39, 299
BSU08730 perR transcriptional regulator (Fur family) (RefSeq) 39, 389
BSU09110 yhcJ putative ABC transporter (binding lipoprotein) (RefSeq) 128, 167
BSU09250 yhcX putative amidohydrolase (RefSeq) 39, 95
BSU09630 yhdX hypothetical protein (RefSeq) 39, 222
BSU09740 yheF hypothetical protein; orphan (RefSeq) 39, 175
BSU13810 ykvS hypothetical protein (RefSeq) 39, 200
BSU13860 ykvY putative Xaa-Pro dipeptidase (RefSeq) 39, 389
BSU14190 dapL N-acetyl-diaminopimelate deacetylase (RefSeq) 128, 313
BSU14260 mobA molybdopterin-guanine dinucleotide biosynthesis protein A (RefSeq) 128, 243
BSU14310 moaD molybdopterin synthase (small subunit) (RefSeq) 128, 150
BSU14480 abh transcriptional regulator (RefSeq) 39, 311
BSU14610 pdhD dihydrolipoamide dehydrogenase (RefSeq) 128, 355
BSU14790 ylaI hypothetical protein (RefSeq) 128, 324
BSU17480 ynzF hypothetical protein (RefSeq) 39, 222
BSU17490 ynzG hypothetical protein (RefSeq) 39, 207
BSU17510 ynaC hypothetical protein (RefSeq) 39, 215
BSU17680 thyA thymidylate synthase (RefSeq) 128, 255
BSU17690 yncM hypothetical protein (RefSeq) 39, 91
BSU17740 ynzB hypothetical protein (RefSeq) 39, 206
BSU17890 tkt transketolase (RefSeq) 128, 273
BSU17900 yneE hypothetical protein (RefSeq) 26, 39
BSU18680 yoaO hypothetical protein (RefSeq) 39, 205
BSU18840 xynA endo-1,4-beta-xylanase (RefSeq) 128, 213
BSU21840 ypjP hypothetical protein (RefSeq) 39, 311
BSU21990 ypdQ hypothetical protein (RefSeq) 39, 311
BSU22080 ypwA metal-dependent carboxypeptidase (RefSeq) 128, 199
BSU22790 hbs non-specific DNA-binding protein HBsu; signal recognition particle-like (SRP) component (RefSeq) 128, 197
BSU23070 serA D-3-phosphoglycerate dehydrogenase (RefSeq) 15, 128
BSU23080 aroD 3-dehydroquinate dehydratase (RefSeq) 128, 231
BSU23360 ppiB peptidyl-prolyl isomerase (RefSeq) 7, 128
BSU23510 xerD site-specific tyrosine recombinase XerD (RefSeq) 7, 128
BSU25550 rpsT 30S ribosomal protein S20 (RefSeq) 128, 197
BSU26880 yraM hypothetical protein (RefSeq) 39, 311
BSU29250 nrnA oligoribonuclease (nanoRNAse), 3',5'-bisphosphate nucleotidase (RefSeq) 128, 324
BSU31440 patB C-S lyase (RefSeq) 11, 128
BSU31590 yufS putative bacteriocin (RefSeq) 39, 206
BSU32330 lipA lipoyl synthase (RefSeq) 116, 128
BSU35220 minJ topological determinant of cell division (RefSeq) 87, 128
BSU35250 ftsX cell-division ABC transporter (RefSeq) 13, 128
BSU35640 lytA membrane bound lipoprotein (RefSeq) 7, 128
BSU35670 gtaB UTP-glucose-1-phosphate uridylyltransferase (RefSeq) 39, 389
BSU35850 ywtE putative hydrolase (RefSeq) 128, 247
BSU36370 fabZ (3R)-hydroxymyristoyl-ACP dehydratase (RefSeq) 128, 245
BSU36730 ywmD hypothetical protein (RefSeq) 39, 364
BSU36900 glyA serine hydroxymethyltransferase (RefSeq) 128, 197
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU06010
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend