Organism : Bacillus subtilis | Module List :
BSU08780 ygaJ

putative peptidase (RefSeq)

CircVis
Functional Annotations (3)
Function System
Peptidase E cog/ cog
proteolysis go/ biological_process
serine-type peptidase activity go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU08780
(Mouseover regulator name to see its description)

BSU08780 is regulated by 29 influences and regulates 0 modules.
Regulators for BSU08780 ygaJ (29)
Regulator Module Operator
BSU02000 285 tf
BSU02070 285 tf
BSU02160 285 tf
BSU02550 285 tf
BSU02890 285 tf
BSU03560 285 tf
BSU05370 285 tf
BSU06140 285 tf
BSU07010 285 tf
BSU09480 285 tf
BSU17850 285 tf
BSU26220 285 tf
BSU26340 285 tf
BSU34180 285 tf
BSU36600 285 tf
BSU37290 285 tf
BSU37580 285 tf
BSU05970 311 tf
BSU06540 311 tf
BSU08410 311 tf
BSU08520 311 tf
BSU09380 311 tf
BSU09480 311 tf
BSU09650 311 tf
BSU14480 311 tf
BSU17850 311 tf
BSU18760 311 tf
BSU19540 311 tf
BSU40800 311 tf

Warning: BSU08780 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5508 4.30e-05 AAAGGaGG
Loader icon
5509 9.10e+03 aaaaaggagAGGGc.atT.ttA
Loader icon
5560 5.30e-01 AAAGGagg
Loader icon
5561 5.80e+02 TaCA.TCgcCTTtccattCaTta
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU08780

BSU08780 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
Peptidase E cog/ cog
proteolysis go/ biological_process
serine-type peptidase activity go/ molecular_function
Module neighborhood information for BSU08780

BSU08780 has total of 50 gene neighbors in modules 285, 311
Gene neighbors (50)
Gene Common Name Description Module membership
BSU02130 glpQ glycerophosphoryl diester phosphodiesterase (RefSeq) 285, 411
BSU02140 glpT glycerol-3-phosphate permease (RefSeq) 285, 411
BSU02170 ybfB putative carboxylate transporter (RefSeq) 84, 285
BSU02380 ybgB hypothetical protein (RefSeq) 206, 285
BSU05720 ydhE putative glycosyltransferase (RefSeq) 285, 360
BSU06000 ydiK hypothetical protein (RefSeq) 39, 311
BSU06800 yezA hypothetical protein (RefSeq) 129, 311
BSU07230 yetM hypothetical protein (RefSeq) 285, 305
BSU07320 yfnC putative efflux transporter (RefSeq) 86, 311
BSU08360 yfiQ putative membrane component involved in biofilm formation (RefSeq) 115, 285
BSU08780 ygaJ putative peptidase (RefSeq) 285, 311
BSU09040 yhcD hypothetical protein (RefSeq) 86, 285
BSU09380 nsrR NO-dependent activator of the ResDE regulon (RefSeq) 222, 311
BSU09460 ctrA branched-chain amino acid transporter (RefSeq) 38, 311
BSU09720 yheH ABC transporter (ATP-binding protein) involved in the signalling pathway that activates KinA during sporulation initiation (RefSeq) 84, 285
BSU10180 yhfC putative integral membrane protein, putative chaperone (RefSeq) 74, 285
BSU10450 yhjB putative Na+/metabolite cotransporter (RefSeq) 71, 311
BSU10460 yhjC hypothetical protein (RefSeq) 285, 311
BSU10500 yhjG hypothetical protein (RefSeq) 168, 285
BSU10520 glcP glucose/mannose:H+ symporter (RefSeq) 310, 311
BSU10530 ntdC biosynthesis of neotrehalosadiamine (3,3'-diamino-3,3'-dideoxy-alpha,beta-trehalose), dehydrogenase (RefSeq) 310, 311
BSU10540 ntdB biosynthesis of neotrehalosadiamine (3,3'-diamino-3,3'-dideoxy-alpha,beta-trehalose); hydrolase (RefSeq) 310, 311
BSU11900 yjcL putative integral inner membrane protein; possibly aquaporin-related (RefSeq) 52, 311
BSU14480 abh transcriptional regulator (RefSeq) 39, 311
BSU17070 ymcC putative integral inner membrane protein (RefSeq) 246, 285
BSU17090 pksB putative hydrolase (RefSeq) 222, 311
BSU17820 yndL putative phage-related replication protein (RefSeq) 47, 285
BSU21840 ypjP hypothetical protein (RefSeq) 39, 311
BSU21960 ypeQ hypothetical protein (RefSeq) 244, 311
BSU21970 ypeP hypothetical protein (RefSeq) 157, 311
BSU21980 ypdP putative integral inner membrane protein (RefSeq) 157, 311
BSU21990 ypdQ hypothetical protein (RefSeq) 39, 311
BSU22940 prsW protease required for RsiW anti-sigma(W) degradation (RefSeq) 123, 311
BSU23000 ypbE hypothetical protein (RefSeq) 151, 311
BSU23020 recQ ATP-dependent DNA helicase (RefSeq) 151, 311
BSU23030 ypbB hypothetical protein (RefSeq) 151, 311
BSU24190 yqiI putative N-acetylmuramoyl-L-alanine amidase (RefSeq) 52, 285
BSU25540 gpr germination protease (RefSeq) 43, 285
BSU26880 yraM hypothetical protein (RefSeq) 39, 311
BSU28620 rnhC ribonuclease HIII (RefSeq) 200, 311
BSU28670 ysfB putative regulator (RefSeq) 285, 312
BSU32230 yuxL putative acylaminoacyl-peptidase (RefSeq) 231, 285
BSU32980 yusZ short chain dehydrogenase (RefSeq) 52, 285
BSU36150 ywqN putative oxidoreductase (RefSeq) 84, 285
BSU36540 ywnJ putative integral inner membrane protein (RefSeq) 157, 311
BSU38460 tyrZ tyrosyl-tRNA synthetase (RefSeq) 71, 285
BSU39420 deoC deoxyribose-phosphate aldolase (RefSeq) 168, 285
BSU40240 yycS putative integrase/transposase (RefSeq) 44, 285
BSU40840 yyaJ putative transporter (RefSeq) 222, 311
BSU40850 maa maltose O-acetyltransferase (RefSeq) 257, 285
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU08780
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend