Organism : Bacillus subtilis | Module List :
BSU24520 mntR

manganese transport transcriptional regulator (RefSeq)

CircVis
Functional Annotations (4)
Function System
Mn-dependent transcriptional regulator cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
iron ion binding go/ molecular_function
regulation of transcription, DNA-dependent go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU24520
(Mouseover regulator name to see its description)

BSU24520 is regulated by 27 influences and regulates 11 modules.
Regulators for BSU24520 mntR (27)
Regulator Module Operator
BSU00560 292 tf
BSU00800 292 tf
BSU01010 292 tf
BSU04460 292 tf
BSU05460 292 tf
BSU14990 292 tf
BSU16170 292 tf
BSU17080 292 tf
BSU24250 292 tf
BSU24320 292 tf
BSU27520 292 tf
BSU28400 292 tf
BSU29000 292 tf
BSU32140 292 tf
BSU34630 292 tf
BSU02500 233 tf
BSU04770 233 tf
BSU05320 233 tf
BSU06860 233 tf
BSU08340 233 tf
BSU09510 233 tf
BSU29740 233 tf
BSU31070 233 tf
BSU37580 233 tf
BSU38310 233 tf
BSU38910 233 tf
BSU40670 233 tf
Regulated by BSU24520 (11)
Module Residual Genes
14 0.45 27
23 0.47 24
51 0.40 28
126 0.32 20
151 0.49 30
197 0.45 26
220 0.43 7
224 0.31 19
265 0.39 18
322 0.47 21
370 0.46 10
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5410 7.60e+00 cGgAGGaGGggAA
Loader icon
5411 2.20e+04 GCCAGCGGTC
Loader icon
5522 3.40e-01 cctccTtTtTTctat
Loader icon
5523 9.10e+02 GCttTTTT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU24520

BSU24520 is enriched for 4 functions in 3 categories.
Enrichment Table (4)
Function System
Mn-dependent transcriptional regulator cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
iron ion binding go/ molecular_function
regulation of transcription, DNA-dependent go/ biological_process
Module neighborhood information for BSU24520

BSU24520 has total of 53 gene neighbors in modules 233, 292
Gene neighbors (53)
Gene Common Name Description Module membership
BSU00190 dnaX DNA polymerase III subunits gamma and tau (RefSeq) 97, 292
BSU00200 yaaK hypothetical protein (RefSeq) 188, 233
BSU00500 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase (RefSeq) 292, 325
BSU00510 prs ribose-phosphate pyrophosphokinase (RefSeq) 292, 325
BSU02500 ycbG transcriptional regulator (GntR family) (RefSeq) 233, 293
BSU03240 ycgQ hypothetical protein (RefSeq) 150, 233
BSU03250 ycgR putative permease (RefSeq) 89, 233
BSU04510 ydbL hypothetical protein (RefSeq) 189, 233
BSU05320 ydeS putative transcriptional regulator (TetR/AcrR family) (RefSeq) 233, 255
BSU06860 yezE putative transcriptional regulator (TetR family) (RefSeq) 233, 361
BSU09080 yhcH putative ABC transporter (ATP-binding protein) (RefSeq) 150, 233
BSU12910 proG pyrroline-5-carboxylate reductase (RefSeq) 233, 323
BSU16050 rbgA ribosomal biogenesis GTPase (RefSeq) 1, 292
BSU16120 topA DNA topoisomerase I (RefSeq) 292, 409
BSU16640 ylxP hypothetical protein (RefSeq) 170, 292
BSU16650 rbfA ribosome-binding factor A (RefSeq) 122, 292
BSU22320 ponA peptidoglycan glycosyltransferase (penicillin-binding proteins 1A and 1B) (RefSeq) 67, 292
BSU23490 pupG purine nucleoside phosphorylase (RefSeq) 63, 292
BSU23600 yqxK hypothetical protein (RefSeq) 66, 292
BSU23610 nudF ADP-ribose pyrophosphatase (RefSeq) 272, 292
BSU23760 coaA pantothenate kinase (RefSeq) 116, 233
BSU23840 yqjK ribonuclease Z (RefSeq) 102, 233
BSU24130 prpD 2-methylcitrate dehydratase (RefSeq) 284, 292
BSU24520 mntR manganese transport transcriptional regulator (RefSeq) 233, 292
BSU25220 antE hypothetical protein (RefSeq) 205, 233
BSU25230 yqxD hypothetical protein (RefSeq) 292, 309
BSU27830 coxA spore cortex protein (RefSeq) 233, 322
BSU27930 spo0B sporulation initiation phosphotransferase (RefSeq) 170, 292
BSU28390 racE glutamate racemase (RefSeq) 292, 322
BSU28400 ysmB putative transcriptional regulator (MarR family) (RefSeq) 292, 322
BSU28980 dnaI primosomal protein DnaI (RefSeq) 228, 292
BSU31500 yuxK hypothetical protein (RefSeq) 233, 402
BSU31790 yueG putative spore germination protein (RefSeq) 233, 365
BSU32110 yumC ferredoxin-NADP+ reductase (RefSeq) 177, 233
BSU32220 yutI putative iron-sulfur scaffold protein (RefSeq) 53, 292
BSU32660 yurT putative methylglyoxalase (RefSeq) 50, 233
BSU33630 secG preprotein translocase subunit SecG (RefSeq) 233, 393
BSU36110 ywrC putative transcriptional regulator (Lrp/AsnC family) (RefSeq) 233, 327
BSU36120 ywrB putative anion transporter (RefSeq) 233, 409
BSU36890 upp uracil phosphoribosyltransferase (RefSeq) 292, 325
BSU36950 ywlC putative ribosome maturation factor; RNA binding protein (RefSeq) 37, 233
BSU37930 ywdK hypothetical protein (RefSeq) 233, 241
BSU38880 yxjO putative transcriptional regulator (LysR family) (RefSeq) 167, 233
BSU38890 yxjN putative integral inner membrane protein (RefSeq) 38, 233
BSU38900 yxjM two-component sensor histidine kinase [YxjL] (RefSeq) 89, 233
BSU38910 yxjL two-component response regulator [YxjM] (RefSeq) 11, 233
BSU39280 yxxE hypothetical protein (RefSeq) 124, 233
BSU39290 yxxD hypothetical protein (RefSeq) 124, 233
BSU39550 yxeH putative hydrolase (RefSeq) 116, 233
BSU39560 yxeG putative integral inner membrane protein (RefSeq) 29, 233
BSU39570 yxeF hypothetical protein (RefSeq) 142, 233
BSU40500 rplI 50S ribosomal protein L9 (RefSeq) 188, 292
BSU40510 yybT putative phosphodiesterase (RefSeq) 1, 292
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU24520
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend