Organism : Bacillus subtilis | Module List :
BSU25970 yqcA

hypothetical protein (RefSeq)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU25970
(Mouseover regulator name to see its description)

BSU25970 is regulated by 22 influences and regulates 0 modules.
Regulators for BSU25970 yqcA (22)
Regulator Module Operator
BSU02000 130 tf
BSU03560 130 tf
BSU05420 130 tf
BSU06960 130 tf
BSU08300 130 tf
BSU25200 130 tf
BSU26220 130 tf
BSU26320 130 tf
BSU26340 130 tf
BSU36600 130 tf
BSU37290 130 tf
BSU39850 130 tf
BSU40800 130 tf
BSU02000 305 tf
BSU02160 305 tf
BSU03890 305 tf
BSU26220 305 tf
BSU26320 305 tf
BSU30150 305 tf
BSU35030 305 tf
BSU36600 305 tf
BSU37290 305 tf

Warning: BSU25970 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5212 6.90e+00 TCCCcTTTc.cgac
Loader icon
5213 3.70e+01 CtcTtCgcgaCaaCTtTaTCcAAC
Loader icon
5548 3.00e+04 AAaGGAGattAc
Loader icon
5549 1.80e+02 atTCgTTtTgaaACg.tTc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU25970

Warning: No Functional annotations were found!

Module neighborhood information for BSU25970

BSU25970 has total of 44 gene neighbors in modules 130, 305
Gene neighbors (44)
Gene Common Name Description Module membership
BSU02420 glnT glutamine transporter (RefSeq) 295, 305
BSU02430 ybgJ glutaminase (RefSeq) 10, 305
BSU02610 ycbR hypothetical protein (RefSeq) 222, 305
BSU02620 phoD phosphodiesterase/alkaline phosphatase D (RefSeq) 305, 372
BSU02630 tatAD component of the twin-arginine pre-protein translocation pathway (RefSeq) 305, 372
BSU02640 tatCD component of the twin-arginine pre-protein translocation pathway (RefSeq) 84, 305
BSU02690 ansZ L-asparaginase (putative lipoprotein) (RefSeq) 130, 200
BSU02730 natK two-component sensor histidine kinase [NatR] (RefSeq) 130, 246
BSU02740 natR two-component response regulator [NatK] (RefSeq) 130, 246
BSU02750 natA Na+ ABC efflux transporter (ATP-binding protein) (RefSeq) 130, 246
BSU02760 natB Na+ ABC efflux transporter (permease) (RefSeq) 130, 246
BSU03310 nasC assimilatory nitrate reductase (catalytic subunit) (RefSeq) 130, 405
BSU03320 nasB assimilatory nitrate reductase (electron transfer subunit) (RefSeq) 305, 405
BSU03330 nasA nitrate transporter (RefSeq) 130, 405
BSU05310 ydeR putative efflux transporter (RefSeq) 175, 305
BSU05430 ydfJ putative proton metabolite efflux transporter (RefSeq) 175, 305
BSU06550 yecA putative amino acid/polyamine permease (RefSeq) 130, 301
BSU07230 yetM hypothetical protein (RefSeq) 285, 305
BSU09190 yhcR non specific extracellular endonuclease cleaving RNA and DNA (RefSeq) 10, 305
BSU10590 yhjP hypothetical protein (RefSeq) 130, 371
BSU11070 yitP hypothetical protein (RefSeq) 282, 305
BSU12880 ykcB putative integral membrane protein; putative glycosyl transferase (RefSeq) 130, 238
BSU12890 ykcC putative glycosyltransferase (RefSeq) 130, 291
BSU25950 yqcC hypothetical protein (RefSeq) 130, 305
BSU25960 yqcB hypothetical protein; skin element (RefSeq) 305, 372
BSU25970 yqcA hypothetical protein (RefSeq) 130, 305
BSU25980 yqbT putative phage capsid assembly protein; skin element (RefSeq) 130, 305
BSU26000 yqbR conserved hypothetical protein; skin element (RefSeq) 130, 305
BSU26010 yqbQ conserved hypothetical protein; skin element (RefSeq) 130, 305
BSU26020 yqbP conserved hypothetical protein; skin element (RefSeq) 130, 305
BSU26030 yqbO putative lytic transglycosylase (RefSeq) 130, 305
BSU26060 yqbM hypothetical protein (RefSeq) 129, 130
BSU26090 yqbJ conserved hypothetical protein; skin element (RefSeq) 88, 130
BSU26100 yqbI conserved hypothetical protein; skin element (RefSeq) 130, 175
BSU26170 yqbB putative phage head morphogenesis protein; skin element (RefSeq) 130, 387
BSU26220 yqaQ conserved hypothetical protein; skin element (RefSeq) 205, 305
BSU26280 yqaK putative DNA recombination protein; skin element (RefSeq) 130, 371
BSU26290 yqaJ putative nuclease; skin element (RefSeq) 130, 371
BSU30090 yteU putative membrane enzyme for rhamnogalaturonan degradation (RefSeq) 305, 371
BSU32430 pucJ uric acid permease (RefSeq) 84, 305
BSU34460 levB endolevanase (RefSeq) 130, 231
BSU36500 ywoB putative integral inner membrane protein (RefSeq) 130, 307
BSU38390 ywbA putative phosphotransferase system enzyme IIC permease component (RefSeq) 44, 130
BSU40570 yybO putative permease (RefSeq) 130, 231
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU25970
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend