Organism : Clostridium acetobutylicum | Module List :
CAC2608

Trancriptional regulator of AraC family (NCBI ptt file)

CircVis
Functional Annotations (6)
Function System
AraC-type DNA-binding domain-containing proteins cog/ cog
DNA binding go/ molecular_function
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
sequence-specific DNA binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC2608
(Mouseover regulator name to see its description)

CAC2608 is regulated by 18 influences and regulates 11 modules.
Regulators for CAC2608 (18)
Regulator Module Operator
CAC0859 117 tf
CAC1340 117 tf
CAC1578 117 tf
CAC1950 117 tf
CAC2608 117 tf
CAC3152 117 tf
CAC3507 117 tf
CAC3611 117 tf
CAC1046 158 tf
CAC1481 158 tf
CAC2055 158 tf
CAC2608 158 tf
CAC3349 158 tf
CAC3424 158 tf
CAC3466 158 tf
CAC3494 158 tf
CAC3611 158 tf
CAC3649 158 tf
Regulated by CAC2608 (11)
Module Residual Genes
51 0.48 30
59 0.37 28
73 0.43 28
80 0.37 24
117 0.40 23
140 0.38 23
158 0.39 23
225 0.44 28
254 0.41 25
259 0.45 26
345 0.47 29
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6886 1.10e+02 gCtTCggcTt
Loader icon
6887 1.40e+00 AGGaGg
Loader icon
6968 3.80e-02 TaaaagC..AgGc
Loader icon
6969 9.90e+01 AcAgtc.taaaagggActaAA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC2608

CAC2608 is enriched for 6 functions in 3 categories.
Enrichment Table (6)
Function System
AraC-type DNA-binding domain-containing proteins cog/ cog
DNA binding go/ molecular_function
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
sequence-specific DNA binding go/ molecular_function
Module neighborhood information for CAC2608

CAC2608 has total of 42 gene neighbors in modules 117, 158
Gene neighbors (42)
Gene Common Name Description Module membership
CAC0148 CAC0148 Predicted enzyme with TIM-barrel fold (NCBI ptt file) 117, 345
CAC0248 CAC0248 Transposon related protein (NCBI ptt file) 13, 117
CAC0325 CAC0325 Uncharacterized membrane protein, homolog of YtaF B.subtilis (NCBI ptt file) 13, 117
CAC0583 CAC0583 CBIK protein (chain A, anaerobic cobalt chelatase) (NCBI ptt file) 117, 344
CAC0584 CAC0584 Precorrin-6B methylase 1 CobL1/CbiE (NCBI ptt file) 106, 117
CAC1049 CAC1049 Uncharacterized conserved protein,ortholog of YaaR B.subtilis (NCBI ptt file) 117, 158
CAC1317 CAC1317 Potassium channel subunit (NCBI ptt file) 117, 344
CAC1438 CAC1438 Hypothetical protein (NCBI ptt file) 113, 158
CAC1439 CAC1439 Uncharacterized conserved protein (NCBI ptt file) 115, 158
CAC1440 CAC1440 Hypothetical protein (NCBI ptt file) 115, 158
CAC1481 CAC1481 Transcriptional regulator, LysR family (NCBI ptt file) 140, 158
CAC1482 CAC1482 Uncharacterized membrane protein,ortholog of YDFK B.subtilis (NCBI ptt file) 158, 346
CAC1499 CAC1499 A/G-specific DNA glycosylase (NCBI ptt file) 140, 158
CAC1504 CAC1504 MDR-type permease (NCBI ptt file) 140, 158
CAC1528 CAC1528 Predicted membrane protein (NCBI ptt file) 117, 336
CAC1543 CAC1543 Lactate dehydrogenase (NCBI ptt file) 117, 265
CAC1614 CAC1614 Predicted glycosyltransferase (NCBI ptt file) 69, 117
CAC1771 CAC1771 Uncharacterized protein, ykrI B.subtilis homolog (NCBI ptt file) 73, 158
CAC1911 CAC1911 Hypothetical protein (NCBI ptt file) 117, 345
CAC1921 CAC1921 Hypothetical protein (NCBI ptt file) 54, 117
CAC1922 CAC1922 Hypothetical protein (NCBI ptt file) 117, 246
CAC1948 CAC1948 Hypothetical protein (NCBI ptt file) 117, 261
CAC1949 CAC1949 Possible TPR-repeat contaning protein (NCBI ptt file) 117, 261
CAC1950 CAC1950 Hypothetical protein (NCBI ptt file) 117, 345
CAC2055 CAC2055 Predicted transcriptional regulator (NCBI ptt file) 158, 345
CAC2364 CAC2364 Uncharacterized protein, homolog of gi|2274936 Eubacterium acidaminophilum (NCBI ptt file) 158, 261
CAC2418 CAC2418 Uncharacterized conserved membrane protein (NCBI ptt file) 117, 158
CAC2496 CAC2496 Predicted phosphatase of HAD hydrolase superfamily (NCBI ptt file) 158, 261
CAC2608 CAC2608 Trancriptional regulator of AraC family (NCBI ptt file) 117, 158
CAC2694 CAC2694 Hypothetical protein (NCBI ptt file) 158, 345
CAC2696 CAC2696 Predicted membrane protein (NCBI ptt file) 117, 346
CAC2907 CAC2907 Glycosyltransferase (NCBI ptt file) 13, 117
CAC2928 CAC2928 Predicted membrane protein (NCBI ptt file) 140, 158
CAC3228 CAC3228 Predicted membrane protein (NCBI ptt file) 5, 117
CAC3424 CAC3424 Transcriptional regulator, RpiR family (NCBI ptt file) 158, 345
CAC3519 CAC3519 Predicted membrane protein, possible permease (NCBI ptt file) 158, 207
CAC3520 CAC3520 ABC-type transport system, ATPase component (NCBI ptt file) 158, 207
CAC3611 CAC3611 Regulatory protein related to malT, positive regulator of mal regulon (ATPase and HTH-type DNA-binding domain) (NCBI ptt file) 117, 158
CAC3614 CAC3614 Uncharacterized conserved membrane protein, possible permease (NCBI ptt file) 115, 158
CAC3615 CAC3615 Uncharacterized conserved membrane protein, possible permease (NCBI ptt file) 115, 158
CAC3616 CAC3616 ABC transport system, ATPase component (NCBI ptt file) 115, 158
CAC3683 CAC3683 Penicillin-binding protein 2 (serine-type D-Ala-D-Ala carboxypeptidase) (NCBI ptt file) 117, 286
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC2608
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend