Organism : Clostridium acetobutylicum | Module List :
CAC1528

Predicted membrane protein (NCBI ptt file)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC1528
(Mouseover regulator name to see its description)

CAC1528 is regulated by 27 influences and regulates 0 modules.
Regulators for CAC1528 (27)
Regulator Module Operator
CAC0457 336 tf
CAC0627 336 tf
CAC0863 336 tf
CAC1070 336 tf
CAC1463 336 tf
CAC1483 336 tf
CAC2052 336 tf
CAC2054 336 tf
CAC2084 336 tf
CAC3214 336 tf
CAC3247 336 tf
CAC3283 336 tf
CAC3409 336 tf
CAC3466 336 tf
CAC3488 336 tf
CAC3603 336 tf
CAC3649 336 tf
CAC3695 336 tf
CAC3729 336 tf
CAC0859 117 tf
CAC1340 117 tf
CAC1578 117 tf
CAC1950 117 tf
CAC2608 117 tf
CAC3152 117 tf
CAC3507 117 tf
CAC3611 117 tf

Warning: CAC1528 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6886 1.10e+02 gCtTCggcTt
Loader icon
6887 1.40e+00 AGGaGg
Loader icon
7324 9.10e-09 gGAGGtg.tt
Loader icon
7325 3.00e+03 CAaCCCCC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC1528

Warning: No Functional annotations were found!

Module neighborhood information for CAC1528

CAC1528 has total of 48 gene neighbors in modules 117, 336
Gene neighbors (48)
Gene Common Name Description Module membership
CAC0148 CAC0148 Predicted enzyme with TIM-barrel fold (NCBI ptt file) 117, 345
CAC0248 CAC0248 Transposon related protein (NCBI ptt file) 13, 117
CAC0325 CAC0325 Uncharacterized membrane protein, homolog of YtaF B.subtilis (NCBI ptt file) 13, 117
CAC0456 lonA ATP-dependent protease (lonA) (NCBI ptt file) 100, 336
CAC0583 CAC0583 CBIK protein (chain A, anaerobic cobalt chelatase) (NCBI ptt file) 117, 344
CAC0584 CAC0584 Precorrin-6B methylase 1 CobL1/CbiE (NCBI ptt file) 106, 117
CAC0621 CAC0621 Exopolyphosphatase (NCBI ptt file) 205, 336
CAC1049 CAC1049 Uncharacterized conserved protein,ortholog of YaaR B.subtilis (NCBI ptt file) 117, 158
CAC1060 CAC1060 Predicted membrane protein (NCBI ptt file) 336, 351
CAC1317 CAC1317 Potassium channel subunit (NCBI ptt file) 117, 344
CAC1528 CAC1528 Predicted membrane protein (NCBI ptt file) 117, 336
CAC1533 CAC1533 Hypothetical protein (NCBI ptt file) 68, 336
CAC1543 CAC1543 Lactate dehydrogenase (NCBI ptt file) 117, 265
CAC1614 CAC1614 Predicted glycosyltransferase (NCBI ptt file) 69, 117
CAC1702 CAC1702 Hypothetical protein (NCBI ptt file) 208, 336
CAC1703 CAC1703 Methyl-accepting chemotaxis protein (fragment) (NCBI ptt file) 205, 336
CAC1704 CAC1704 Hypothetical protein (NCBI ptt file) 183, 336
CAC1863 CAC1863 Hypothetical protein (NCBI ptt file) 336, 357
CAC1865 CAC1865 Site-specific recombinases, DNA invertase Pin homolog (NCBI ptt file) 190, 336
CAC1911 CAC1911 Hypothetical protein (NCBI ptt file) 117, 345
CAC1921 CAC1921 Hypothetical protein (NCBI ptt file) 54, 117
CAC1922 CAC1922 Hypothetical protein (NCBI ptt file) 117, 246
CAC1948 CAC1948 Hypothetical protein (NCBI ptt file) 117, 261
CAC1949 CAC1949 Possible TPR-repeat contaning protein (NCBI ptt file) 117, 261
CAC1950 CAC1950 Hypothetical protein (NCBI ptt file) 117, 345
CAC1960 CAC1960 Uncharacterized protein, YYAC B.subtilis homolog (NCBI ptt file) 208, 336
CAC1974 CAC1974 Hypothetical secreted protein (NCBI ptt file) 208, 336
CAC1976 CAC1976 Hypothetical secreted protein (NCBI ptt file) 205, 336
CAC1977 CAC1977 Predicted membrane protein (NCBI ptt file) 205, 336
CAC1978 CAC1978 Predicted membrane protein (NCBI ptt file) 205, 336
CAC1980 CAC1980 Predicted ATPase involved in pili biogenesis (NCBI ptt file) 205, 336
CAC1981 CAC1981 Hypothetical protein (NCBI ptt file) 208, 336
CAC2046 CAC2046 Predicted membrane protein (NCBI ptt file) 208, 336
CAC2048 CAC2048 Uncharacterized secreted protein (NCBI ptt file) 208, 336
CAC2049 CAC2049 Predicted membrane protein (NCBI ptt file) 208, 336
CAC2051 CAC2051 Predicted membrane protein (NCBI ptt file) 246, 336
CAC2178 CAC2178 Predicted CDP-4-keto-6-deoxy-D-glucose-3-dehydrase (NCBI ptt file) 326, 336
CAC2255 CAC2255 Predicted permease (NCBI ptt file) 336, 359
CAC2418 CAC2418 Uncharacterized conserved membrane protein (NCBI ptt file) 117, 158
CAC2608 CAC2608 Trancriptional regulator of AraC family (NCBI ptt file) 117, 158
CAC2696 CAC2696 Predicted membrane protein (NCBI ptt file) 117, 346
CAC2753 CAC2753 Possible MDR-type permease, YQJV B.subtilis ortholog (NCBI ptt file) 183, 336
CAC2907 CAC2907 Glycosyltransferase (NCBI ptt file) 13, 117
CAC2924 thiS Uncharacterized protein, possibly involved in thiamine biosynthesis (NCBI ptt file) 208, 336
CAC3228 CAC3228 Predicted membrane protein (NCBI ptt file) 5, 117
CAC3611 CAC3611 Regulatory protein related to malT, positive regulator of mal regulon (ATPase and HTH-type DNA-binding domain) (NCBI ptt file) 117, 158
CAC3683 CAC3683 Penicillin-binding protein 2 (serine-type D-Ala-D-Ala carboxypeptidase) (NCBI ptt file) 117, 286
CAC3696 CAC3696 Uncharacterized conserved membrane protein, YUEB B.subtilis homolog (NCBI ptt file) 113, 336
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC1528
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend