Organism : Geobacter sulfurreducens | Module List :
GSU0766

methyl-accepting chemotaxis protein, putative (VIMSS)

CircVis
Functional Annotations (5)
Function System
Methyl-accepting chemotaxis protein cog/ cog
signal transducer activity go/ molecular_function
chemotaxis go/ biological_process
signal transduction go/ biological_process
membrane go/ cellular_component
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU0766
(Mouseover regulator name to see its description)

GSU0766 is regulated by 16 influences and regulates 0 modules.
Regulators for GSU0766 (16)
Regulator Module Operator
GSU0300 82 tf
GSU0951 82 tf
GSU1863 82 tf
GSU1940 82 tf
GSU2354 82 tf
GSU2506 82 tf
GSU3053 82 tf
GSU0164 272 tf
GSU0300 272 tf
GSU0514 272 tf
GSU1003 272 tf
GSU1039 272 tf
GSU1250 272 tf
GSU1569 272 tf
GSU2354 272 tf
GSU3217 272 tf

Warning: GSU0766 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2324 1.30e+00 aAttaTtgtataTCaATATcaacT
Loader icon
2325 8.10e+01 c.AtCAtGaagAaCc
Loader icon
2704 1.00e-13 taaaAAtACtTTatTtt.Tt
Loader icon
2705 1.20e-08 caatacCCacAagtcAtg.C.cgt
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU0766

GSU0766 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
Methyl-accepting chemotaxis protein cog/ cog
signal transducer activity go/ molecular_function
chemotaxis go/ biological_process
signal transduction go/ biological_process
membrane go/ cellular_component
Module neighborhood information for GSU0766

GSU0766 has total of 49 gene neighbors in modules 82, 272
Gene neighbors (49)
Gene Common Name Description Module membership
GSU0120 GSU0120 hydrogenase maturation protease (VIMSS) 82, 141
GSU0264 GSU0264 drug resistance transporter, Bcr/CflA family (VIMSS) 82, 141
GSU0275 GSU0275 hypothetical protein (VIMSS) 82, 141
GSU0278 GSU0278 outer membrane efflux protein (VIMSS) 82, 141
GSU0400 GSU0400 methyl-accepting chemotaxis protein (VIMSS) 82, 156
GSU0425 fliR flagellar biosynthesis protein FliR (NCBI) 82, 141
GSU0426 flhB flagellar biosynthetic protein FlhB (NCBI) 82, 275
GSU0435 GSU0435 MSHA biogenesis protein MshE, putative (VIMSS) 79, 272
GSU0498 GSU0498 hypothetical protein (VIMSS) 153, 272
GSU0766 GSU0766 methyl-accepting chemotaxis protein, putative (VIMSS) 82, 272
GSU0900 GSU0900 hypothetical protein (VIMSS) 79, 272
GSU0902 GSU0902 None 153, 272
GSU0920 GSU0920 hypothetical protein (NCBI) 82, 296
GSU0947 GSU0947 ABC transporter, ATP-binding protein (VIMSS) 272, 293
GSU0951 GSU0951 transcriptional regulator, TetR family (VIMSS) 82, 296
GSU1049 GSU1049 conserved hypothetical protein (NCBI) 21, 272
GSU1050 GSU1050 sensory box histidine kinase (VIMSS) 21, 272
GSU1097 pstA phosphate ABC transporter, permease protein (NCBI) 82, 141
GSU1145 cheB-2 protein-glutamate methylesterase (NCBI) 241, 272
GSU1294 GSU1294 methyl-accepting chemotaxis protein (VIMSS) 82, 190
GSU1304 GSU1304 methyl-accepting chemotaxis protein (VIMSS) 82, 155
GSU1342 GSU1342 transcriptional regulator, LysR family (VIMSS) 127, 272
GSU1343 GSU1343 isochorismatase family protein (NCBI) 127, 272
GSU1618 GSU1618 hypothetical protein (VIMSS) 59, 272
GSU1620 GSU1620 iron-sulfur cluster binding protein, putative (VIMSS) 59, 272
GSU1621 GSU1621 conserved domain protein (VIMSS) 59, 272
GSU1622 GSU1622 L-lactate permease (VIMSS) 59, 272
GSU1623 GSU1623 glycolate oxidase subunit GlcD, putative (VIMSS) 59, 272
GSU1624 GSU1624 glycolate oxidase iron-sulfur subunit, putative (NCBI) 59, 272
GSU2160 GSU2160 hypothetical protein (VIMSS) 78, 82
GSU2186 GSU2186 conserved hypothetical protein (VIMSS) 82, 190
GSU2187 GSU2187 ABC transporter, permease protein (VIMSS) 82, 190
GSU2188 GSU2188 ABC transporter, ATP-binding protein (VIMSS) 82, 190
GSU2189 GSU2189 sensor histidine kinase (VIMSS) 82, 190
GSU2299 GSU2299 cytochrome c family protein (NCBI) 82, 141
GSU2385 GSU2385 hypothetical protein (VIMSS) 82, 278
GSU2388 GSU2388 sensory box histidine kinase (VIMSS) 82, 155
GSU2401 GSU2401 sensory box histidine kinase/response regulator (VIMSS) 82, 141
GSU2511 GSU2511 sensory box/GGDEF family protein (VIMSS) 272, 337
GSU2531 GSU2531 sensory box histidine kinase (VIMSS) 79, 82
GSU2535 GSU2535 response regulator (VIMSS) 82, 224
GSU2580 GSU2580 hypothetical protein (VIMSS) 82, 141
GSU2671 GSU2671 hypothetical protein (VIMSS) 82, 304
GSU3023 GSU3023 glycosyl transferase, group 1/2 family protein (VIMSS) 78, 272
GSU3025 GSU3025 heptosyltransferase family protein (VIMSS) 27, 272
GSU3104 prfA peptide chain release factor 1 (NCBI) 82, 140
GSU3154 GSU3154 cytochrome c nitrite reductase, catalytic subunit NrfA, putative (VIMSS) 16, 82
GSU3221 GSU3221 cytochrome c family protein (NCBI) 6, 82
GSU3227 GSU3227 hypothetical protein (VIMSS) 82, 141
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU0766
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend