Organism : Geobacter sulfurreducens | Module List :
GSU1311 glk

glucose-6-phosphate isomerase (NCBI)

CircVis
Functional Annotations (11)
Function System
Glucose-6-phosphate isomerase cog/ cog
glucose-6-phosphate isomerase activity go/ molecular_function
gluconeogenesis go/ biological_process
glycolysis go/ biological_process
Glycolysis / Gluconeogenesis kegg/ kegg pathway
Pentose phosphate pathway kegg/ kegg pathway
Starch and sucrose metabolism kegg/ kegg pathway
Amino sugar and nucleotide sugar metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
Microbial metabolism in diverse environments kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU1311
(Mouseover regulator name to see its description)

GSU1311 is regulated by 15 influences and regulates 0 modules.
Regulators for GSU1311 glk (15)
Regulator Module Operator
GSU0732 8 tf
GSU1013 8 tf
GSU1495 8 tf
GSU1727 8 tf
GSU2523 8 tf
GSU3060 8 tf
GSU0147 205 tf
GSU0366 205 tf
GSU1201 205 tf
GSU1522 205 tf
GSU1727 205 tf
GSU2149 205 tf
GSU2520 205 tf
GSU2523 205 tf
GSU2581 205 tf

Warning: GSU1311 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2176 1.10e+04 TCcCtt..g.TGGatcCgtTc
Loader icon
2177 6.90e+04 tgGtCaagGAtTgCctcGctC
Loader icon
2570 1.60e+03 tTaaCctcGaaAAggCgGccA
Loader icon
2571 8.80e+03 GCAgaTccTgcCCctTt
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU1311

GSU1311 is enriched for 11 functions in 3 categories.
Enrichment Table (11)
Function System
Glucose-6-phosphate isomerase cog/ cog
glucose-6-phosphate isomerase activity go/ molecular_function
gluconeogenesis go/ biological_process
glycolysis go/ biological_process
Glycolysis / Gluconeogenesis kegg/ kegg pathway
Pentose phosphate pathway kegg/ kegg pathway
Starch and sucrose metabolism kegg/ kegg pathway
Amino sugar and nucleotide sugar metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
Microbial metabolism in diverse environments kegg/ kegg pathway
Module neighborhood information for GSU1311

GSU1311 has total of 41 gene neighbors in modules 8, 205
Gene neighbors (41)
Gene Common Name Description Module membership
GSU0085 GSU0085 heterodisulfide reductase, cytochrome reductase subunit (VIMSS) 8, 196
GSU0086 GSU0086 hypothetical protein (VIMSS) 8, 323
GSU0146 pilT-1 twitching motility protein PilT (NCBI) 205, 233
GSU0149 GSU0149 sensor histidine kinase/response regulator (NCBI) 205, 207
GSU0289 GSU0289 conserved hypothetical protein (VIMSS) 8, 253
GSU0309 hypE hydrogenase expression/formation protein hype (VIMSS) 94, 205
GSU0316 GSU0316 hypothetical protein (VIMSS) 8, 191
GSU0512 GSU0512 conserved hypothetical protein (VIMSS) 8, 278
GSU0651 GSU0651 hydrolase, carbon-nitrogen family (NCBI) 162, 205
GSU0653 GSU0653 tetrapyrrole methylase family protein (NCBI) 205, 301
GSU0703 GSU0703 hypothetical protein (VIMSS) 8, 129
GSU0809 GSU0809 carbonic anhydrase, putative (NCBI) 176, 205
GSU0821 GSU0821 conserved hypothetical protein (VIMSS) 8, 75
GSU0879 cheV chemotaxis protein CheV (NCBI) 8, 212
GSU0934 GSU0934 hypothetical protein (VIMSS) 8, 164
GSU1048 GSU1048 SEC-C motif domain protein (VIMSS) 8, 47
GSU1107 GSU1107 conserved hypothetical protein TIGR00296 (VIMSS) 205, 207
GSU1135 GSU1135 hypothetical protein (VIMSS) 205, 314
GSU1216 cydC transport ATP-binding protein CydC (NCBI) 8, 181
GSU1230 GSU1230 conserved hypothetical protein (VIMSS) 35, 205
GSU1287 GSU1287 methyl accepting chemotaxis protein, putative (VIMSS) 8, 131
GSU1310 GSU1310 pyridine nucleotide-disulfide oxidoreductase (Regina ONeil) 181, 205
GSU1311 glk glucose-6-phosphate isomerase (NCBI) 8, 205
GSU1544 GSU1544 hypothetical protein (VIMSS) 8, 105
GSU1657 GSU1657 DNA internalization-related competence protein ComEC/Rec2 (VIMSS) 8, 225
GSU1823 GSU1823 hypothetical protein (VIMSS) 8, 140
GSU1830 GSU1830 conserved hypothetical protein (VIMSS) 80, 205
GSU1834 GSU1834 peptidase, M50 family (NCBI) 72, 205
GSU1840 GSU1840 PAP2 family protein (VIMSS) 8, 219
GSU1998 GSU1998 transporter, putative (VIMSS) 8, 99
GSU2004 GSU2004 3-octaprenyl-4-hydroxybenzoate carboxy-lyase family protein (NCBI) 98, 205
GSU2099 GSU2099 sensory box protein, putative (VIMSS) 8, 276
GSU2332 GSU2332 hypothetical protein (VIMSS) 8, 47
GSU2370 accD acetyl-CoA carboxylase, carboxyl transferase, beta subunit (NCBI) 205, 262
GSU2622 GSU2622 HAMP domain/GAF domain/HD domain protein (NCBI) 8, 269
GSU2976 GSU2976 DedA family protein (VIMSS) 8, 176
GSU3310 GSU3310 hypothetical protein (VIMSS) 8, 47
GSU3334 GSU3334 cytochrome c family protein, putative (NCBI) 3, 205
GSU3382 GSU3382 hypothetical protein (VIMSS) 8, 176
GSU3384 GSU3384 cardiolipin synthetase, putative (VIMSS) 8, 231
GSU3463 gidB glucose-inhibited division protein B (NCBI) 8, 71
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU1311
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend