Organism : Bacillus subtilis | Module List :
BSU25660 aroE

shikimate 5-dehydrogenase (RefSeq)

CircVis
Functional Annotations (8)
Function System
Shikimate 5-dehydrogenase cog/ cog
shikimate 3-dehydrogenase (NADP+) activity go/ molecular_function
cytoplasm go/ cellular_component
NADP binding go/ molecular_function
Phenylalanine tyrosine and tryptophan biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
aroE tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU25660
(Mouseover regulator name to see its description)

BSU25660 is regulated by 12 influences and regulates 0 modules.
Regulators for BSU25660 aroE (12)
Regulator Module Operator
BSU01730 166 tf
BSU01740 166 tf
BSU35110 166 tf
BSU35650 166 tf
BSU04460 170 tf
BSU14990 170 tf
BSU16170 170 tf
BSU24250 170 tf
BSU28400 170 tf
BSU32870 170 tf
BSU35520 170 tf
BSU35840 170 tf

Warning: BSU25660 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5280 3.70e-05 TGAAAccTtTT
Loader icon
5281 9.10e+02 CTcCGAtTTacGGAAAttGG
Loader icon
5288 3.90e+02 tctTTtTTCgtctGgtcag
Loader icon
5289 3.60e+02 aCtg.TTTTTT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU25660

BSU25660 is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
Shikimate 5-dehydrogenase cog/ cog
shikimate 3-dehydrogenase (NADP+) activity go/ molecular_function
cytoplasm go/ cellular_component
NADP binding go/ molecular_function
Phenylalanine tyrosine and tryptophan biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
aroE tigr/ tigrfam
Module neighborhood information for BSU25660

BSU25660 has total of 58 gene neighbors in modules 166, 170
Gene neighbors (58)
Gene Common Name Description Module membership
BSU00260 yaaN hypothetical protein (RefSeq) 54, 166
BSU00710 hslO Hsp33-like chaperonin (RefSeq) 166, 314
BSU00720 yacD putative protein secretion PrsA homolog (RefSeq) 13, 166
BSU01130 tufA elongation factor Tu (RefSeq) 7, 166
BSU01730 sigW RNA polymerase sigma factor SigW (RefSeq) 159, 166
BSU01740 rsiW anti-sigma(W) factor (RefSeq) 159, 166
BSU04570 murF UDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6-diaminopimelate-D-alanyl-D-alanine ligase (RefSeq) 170, 409
BSU05750 ydhG hypothetical protein (RefSeq) 166, 167
BSU08020 yfjO putative RNA methyltransferase (RefSeq) 170, 191
BSU09510 yhdL negative regulator of the activity of sigma-M (RefSeq) 38, 170
BSU12070 yjdJ hypothetical protein (RefSeq) 166, 291
BSU12420 yjoB ATPase possibly involved in protein degradation (RefSeq) 166, 377
BSU13920 splA TRAP-like transcriptional regulator (RefSeq) 170, 274
BSU14440 ykpB 2-dehydropantoate 2-reductase (RefSeq) 170, 173
BSU14630 speA arginine decarboxylase (RefSeq) 51, 170
BSU14990 ylbF putative regulatory protein (RefSeq) 159, 170
BSU15130 yllB cell division protein MraZ (RefSeq) 166, 377
BSU15140 mraW S-adenosyl-methyltransferase MraW (RefSeq) 79, 166
BSU15150 ftsL cell-division protein (RefSeq) 170, 377
BSU15160 pbpB penicillin-binding protein 2B (RefSeq) 170, 377
BSU15240 divIB cell-division initiation protein (RefSeq) 170, 228
BSU15250 ylxW hypothetical protein (RefSeq) 170, 228
BSU16170 codY transcriptional repressor CodY (RefSeq) 167, 170
BSU16640 ylxP hypothetical protein (RefSeq) 170, 292
BSU18590 yoaG putative permease (RefSeq) 162, 166
BSU18980 yobJ hypothetical protein (RefSeq) 159, 166
BSU19100 yobV putative transcriptional regulator (RefSeq) 64, 170
BSU19170 yocD putative carboxypeptidase (RefSeq) 51, 170
BSU19290 yozO hypothetical protein (RefSeq) 36, 166
BSU21710 dinF damage inducible, Na+ driven multidrug efflux pump (RefSeq) 67, 170
BSU21720 ypmT hypothetical protein (RefSeq) 116, 170
BSU21800 ypkP putative acyltransferase (RefSeq) 53, 170
BSU23220 scpA segregation and condensation protein A (RefSeq) 145, 166
BSU24810 yqgV hypothetical protein (RefSeq) 70, 166
BSU24840 yqgS putative anion transporter and exported enzyme (RefSeq) 97, 170
BSU25310 dgkA undecaprenol kinase (RefSeq) 170, 193
BSU25330 yqfF putative membrane associate hydrolase (RefSeq) 170, 221
BSU25370 yqfB hypothetical protein (RefSeq) 162, 166
BSU25380 yqfA hypothetical protein (RefSeq) 162, 166
BSU25390 yqeZ putative membrane bound hydrolase (RefSeq) 162, 166
BSU25640 nadD nicotinic acid mononucleotide adenylyltransferase (RefSeq) 166, 170
BSU25660 aroE shikimate 5-dehydrogenase (RefSeq) 166, 170
BSU26610 yrkA putative membrane associated protein (RefSeq) 159, 170
BSU27380 yrzB hypothetical protein (RefSeq) 70, 166
BSU27640 yrvC putative potassium transport accessory component (RefSeq) 170, 202
BSU27930 spo0B sporulation initiation phosphotransferase (RefSeq) 170, 292
BSU30000 ythQ putative ABC transporter (permease) (RefSeq) 91, 166
BSU30010 ythP putative ABC transporter (ATP-binding protein) (RefSeq) 91, 166
BSU35100 yvlD putative integral inner membrane protein (RefSeq) 166, 377
BSU35110 yvlC putative regulator (stress mediated) (RefSeq) 166, 377
BSU35120 yvlB hypothetical protein (RefSeq) 166, 377
BSU35130 yvlA hypothetical protein (RefSeq) 166, 377
BSU35140 yvkN hypothetical protein (RefSeq) 31, 166
BSU35650 lytR membrane-bound transcriptional regulator LytR (RefSeq) 145, 166
BSU35840 ywtF putative transcriptional regulator (RefSeq) 159, 170
BSU36090 ywrE hypothetical protein (RefSeq) 166, 239
BSU36760 murAA UDP-N-acetylglucosamine 1-carboxyvinyltransferase (RefSeq) 170, 325
BSU38940 yxjI hypothetical protein (RefSeq) 166, 263
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU25660
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend