Organism : Bacillus subtilis | Module List :
BSU28370 rph

ribonuclease PH (RefSeq)

CircVis
Functional Annotations (7)
Function System
RNase PH cog/ cog
tRNA binding go/ molecular_function
3'-5'-exoribonuclease activity go/ molecular_function
tRNA-specific ribonuclease activity go/ molecular_function
tRNA processing go/ biological_process
tRNA nucleotidyltransferase activity go/ molecular_function
RNasePH tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU28370
(Mouseover regulator name to see its description)

BSU28370 is regulated by 26 influences and regulates 0 modules.
Regulators for BSU28370 rph (26)
Regulator Module Operator
BSU04160 187 tf
BSU09830 187 tf
BSU10860 187 tf
BSU16900 187 tf
BSU24220 187 tf
BSU25250 187 tf
BSU28820 187 tf
BSU29740 187 tf
BSU00230 155 tf
BSU11500 155 tf
BSU15330 155 tf
BSU15690 155 tf
BSU18850 155 tf
BSU19050 155 tf
BSU23090 155 tf
BSU23100 155 tf
BSU23520 155 tf
BSU25760 155 tf
BSU28820 155 tf
BSU29740 155 tf
BSU30020 155 tf
BSU33840 155 tf
BSU33970 155 tf
BSU35650 155 tf
BSU36160 155 tf
BSU37580 155 tf

Warning: BSU28370 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5258 6.50e+01 cggCagTTtCC
Loader icon
5259 2.10e+03 GGagGA.atag
Loader icon
5320 5.80e+01 gAttgAaaaGg
Loader icon
5321 3.20e+04 GCGCGC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU28370

BSU28370 is enriched for 7 functions in 3 categories.
Enrichment Table (7)
Function System
RNase PH cog/ cog
tRNA binding go/ molecular_function
3'-5'-exoribonuclease activity go/ molecular_function
tRNA-specific ribonuclease activity go/ molecular_function
tRNA processing go/ biological_process
tRNA nucleotidyltransferase activity go/ molecular_function
RNasePH tigr/ tigrfam
Module neighborhood information for BSU28370

BSU28370 has total of 42 gene neighbors in modules 155, 187
Gene neighbors (42)
Gene Common Name Description Module membership
BSU02260 ybfK carboxylesterase NP (RefSeq) 11, 155
BSU04010 sipU type I signal peptidase (RefSeq) 155, 313
BSU09570 yhdR aspartate aminotransferase (RefSeq) 155, 247
BSU11170 yitY putative FMN/FAD-binding oxidoreductase (RefSeq) 155, 313
BSU11620 yjbO pseudouridylate synthase (RefSeq) 155, 187
BSU12230 hemD uroporphyrinogen-III synthase (RefSeq) 187, 252
BSU14500 ykqA hypothetical protein (RefSeq) 155, 247
BSU14850 ftsW cell-division protein (RefSeq) 187, 193
BSU15830 yloU hypothetical protein (RefSeq) 63, 155
BSU16060 rnhB ribonuclease HII (RefSeq) 7, 187
BSU16070 ylqG putative glycosyltransferase (RefSeq) 7, 187
BSU16750 asd aspartate-semialdehyde dehydrogenase (RefSeq) 155, 334
BSU16780 rnjB ribonuclease J2 (RefSeq) 155, 289
BSU18850 yobD transcriptional regulator (phage-related, Xre family) (RefSeq) 155, 202
BSU21770 ilvA threonine dehydratase (RefSeq) 102, 155
BSU22460 ypjH putative enzyme in leucine catabolism or biotin metabolism (RefSeq) 187, 382
BSU22470 ypjG hypothetical protein (RefSeq) 187, 382
BSU22600 aroE 3-phosphoshikimate 1-carboxyvinyltransferase (RefSeq) 187, 385
BSU22610 tyrA prephenate dehydrogenase (RefSeq) 107, 187
BSU22760 hepS heptaprenyl diphosphate synthase component I (RefSeq) 15, 187
BSU22870 fni isopentenyl pyrophosphate isomerase (RefSeq) 187, 193
BSU24870 glpG membrane endopeptidase (RefSeq) 187, 252
BSU25030 yqgC putative integral inner membrane protein (RefSeq) 187, 377
BSU27630 yrvD hypothetical protein (RefSeq) 63, 187
BSU27650 secDF bifunctional preprotein translocase subunit SecD/SecF (RefSeq) 155, 273
BSU28350 ysnB phosphoesterase (RefSeq) 187, 243
BSU28360 ysnA nucleoside-triphosphatase (RefSeq) 187, 243
BSU28370 rph ribonuclease PH (RefSeq) 155, 187
BSU29460 moaB molybdopterin GTP-binding precursor Z biosynthesis component (RefSeq) 187, 243
BSU29740 ccpA transcriptional regulator (Lacl family) (RefSeq) 63, 155
BSU31150 yubB undecaprenyl pyrophosphate phosphatase (RefSeq) 116, 155
BSU32200 yutJ putative NADH dehydrogenase (RefSeq) 187, 245
BSU33260 yvrN putative ABC transporter (ATP-binding protein) (RefSeq) 125, 155
BSU33270 yvrO putative ABC transporter (ATP-binding protein) (RefSeq) 125, 155
BSU33280 yvrP putative ABC transporter component (RefSeq) 125, 155
BSU34800 cwlO secreted cell wall DL-endopeptidase (RefSeq) 155, 273
BSU35480 yviA hypothetical protein (RefSeq) 145, 155
BSU36260 ywqC modulator of YwqD protein tyrosine kinase activity (RefSeq) 187, 197
BSU37330 argS arginyl-tRNA synthetase (RefSeq) 102, 155
BSU40830 yyaK putative integral inner membrane protein (RefSeq) 187, 255
VIMSS37406 VIMSS37406 None 164, 187
VIMSS39516 VIMSS39516 None 98, 187
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU28370
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend